OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh S=3^0+3^2+3^4+3^6+...+3^2002 chia hết cho 7

Cho : S = 30 + 32 + 34 + 36 +.......+ 32002

a) Tính S

b) Chứng minh S\(⋮\) 7.

Giúp mk vs Nguyễn Anh Duy

  bởi Trieu Tien 18/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a) \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

    \(\Rightarrow S=1+3^2+3^4+...+3^{2002}\)

    \(\Rightarrow9S=3^2+3^4+3^6+...+3^{2004}\)

    \(\Rightarrow9S-S=\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(1+3^2+3^4+...+3^{2002}\right)\)

    \(\Rightarrow8S=3^{2004}-1\)

    \(\Rightarrow S=\frac{3^{2004}-1}{8}\)

    b) \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

    \(\Rightarrow S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2000}+3^{2001}+3^{2002}\right)\)

    \(\Rightarrow S=\left(1+9+81\right)+3^6.\left(1+3^2+3^4\right)+...+3^{2000}.\left(1+3^2+3^4\right)\)

    \(\Rightarrow S=91+3^6.91+...+3^{2000}.91\)

    \(\Rightarrow S=\left(1+3^6+...+3^{2000}\right).91⋮7\)

    \(\Rightarrow S⋮7\)

      bởi Khánh Nam Trần 18/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF