OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh 5^5 - 5^4 + 5^3 chia hết cho 7

Bài 1: Chứng minh rằng:

a, 5^5 - 5^4 + 5^3 chia hết cho 7.

b, 7^6 + 7^5 - 7^4 chia hết cho 11.

c, 10^9 + 10^8 + 10^7 chia hết cho 222.

d, 10^6 - 5^7 chia hết cho 59.

e, 3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 10 với n \(\in\) N*.

f, 81^7 - 27^9 - 9^13 chia hết cho 45.

  bởi Trịnh Lan Trinh 25/09/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • a/ \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21⋮7\left(đpcm\right)\)

    b/ \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮11\left(đpcm\right)\)

    c/ \(10^9+10^8+10^7=10^7.\left(10^2+10+1\right)=10^7.111=1110000⋮222\left(đpcm\right)\)

    d/ \(10^6-5^7=2^6.5^6-5^7=5^6\left(2^6-5\right)=5^6.59\left(đpcm\right)\)

    e/ \(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n.10-2^n.5=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\left(đpcm\right)\)

    f/ \(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{24}.45⋮45\left(đpcm\right)\)

      bởi Trần Ngọc Thùy Nhi 25/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF