OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho \(n = \overline{7a5} + \overline{8b4}\). Biết \(a - b = 6\) và \(n\) chia hết cho \(9.\) Tìm \(a\) và \(b.\)

  bởi Bánh Mì 28/01/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho \(9.\)

    Tổng \(\overline {7a5}  + \overline {8b4} \) chia hết cho \(9\) nên \( (7 + a + 5 + 8 + b + 4) \,\,⋮ \,\,9,\) tức là:

    \( (24 + a + b )\,\,⋮ \,\,9.\)

    Suy ra \(a + b \in \left\{ {3;12} \right\}.\)

    Ta có \(a + b > 3\) \((\)vì \(a - b = 6)\) nên \(a + b = 12.\)

    Từ \(a + b = 12\) và \(a - b = 6,\) ta có \(a = (12 + 6) : 2 = 9,\) suy ra \(b = 3.\)

    Thử lại: \(795 + 834 = 1629\) chia hết cho \(9.\)

      bởi minh vương 28/01/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF