OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho ba số tự nhiên a, b, c trong đó a và b là các số chia cho 5 dư 3 còn c là số chia cho 5 dư 2. Chứng minh rằng mỗi tổng hoặc hiệu: a + c; a - b chia hết cho 5

  bởi Trịnh Lan Trinh 22/05/2020
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Theo đề bài: a chia cho 5 dư 3 nên a có dạng: a = 5q + 3 (q ∈ N)

    Tương tự b chia cho 5 dư 3 nên b có dạng: b = 5p + 3 (p ∈ N)

    c chia cho 5 dư 2 nên c có dạng: c = 5m + 2 (m ∈ N)

    Xét a + c = (5q + 3) + (5m + 2)

    ⇔ a + c = 5(q + m) + (3 + 2)

    ⇔ a + c = 5(q + m) + 5

    Ta thấy 5(q + m) ⋮ 5 và 5 ⋮ 5 nên a + c chia hết cho 5.

    Tương tự ta có: a - b = (5q + 3) - (5p + 3)

    ⇔ a - b = 5 (q - p)

    Ta thấy 5(q - p) ⋮ 5 nên a - b chia hết cho 5.

      bởi Lê Bảo An 22/05/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF