Xác định \(m\) để hệ bất phương trình sau có nghiệm duy nhất: \(\left\{ \begin{array}{l}2x + 1 - m \le 0\\mx + 2x - 1 \le 0\end{array} \right.\)
Câu trả lời (1)
-
Ta có \(\left\{ \begin{array}{l}2x + 1 - m \le 0\\mx + 2x - 1 \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \le \dfrac{{m - 1}}{2}{\rm{ (1)}}\\\left( {m + 2} \right)x \le 1{\rm{ (2)}}\end{array} \right.\)
Xét bất phương trình (2) . có ba trương hợp
+) \(m = -2\): (2) trở thành \(0x \le 1\) .Bất phương trình (2) nghiệm đúng với mọi \(x \in \mathbb{R}\) . Suy ra hệ có nghiệm là \(x \le \dfrac{-3}{2}\). Suy ra hệ có vô số nghiệm.
+) \(m > -2\): (2) có nghiệm \(x \le \dfrac{1}{{m + 2}}\) . Hệ bất phương trình tương đương với \(\left\{ \begin{array}{l}x \le \dfrac{{m - 1}}{2}\\x \le \dfrac{1}{{m + 2}}\end{array} \right.\). Suy ra hệ có vô số nghiệm.
+) \(m < -2\): (2) có nghiệm \(x \ge \dfrac{1}{{m + 2}}\). Suy ra hệ có nghiệm duy nhất khi và chỉ khi \(\begin{array}{l}\dfrac{{m - 1}}{2} = \dfrac{1}{{m + 2}} \Leftrightarrow {m^2} + m - 2 = 2\\ \Leftrightarrow {m^2} + m - 4 = 0\\ \Leftrightarrow m = \dfrac{{ - 1 \pm \sqrt {17} }}{2}\end{array}\)
Kết hợp với điều kiện \(m < -2\) chọn \(m = \dfrac{{ - 1 - \sqrt {17} }}{2}\).
bởi Dang Thi 19/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời