Tìm các góc của một tam giác biết phương trình các cạnh tam giác đó là: \(x + 2y = 0 ; 2x + y = 0 ; x + y = 1.\)
Câu trả lời (1)
-
Xét tam giác \(ABC\) với phương trình các cạnh của tam giác như đã cho. Khi đó , tọa độ các đỉnh của tam giác là nghiệm của các hệ:
\(\left\{ \begin{array}{l}x + 2y = 0\\2x + y = 0\end{array} \right. ;\) \( \left\{ \begin{array}{l}x + 2y = 0\\x + y - 1 = 0\end{array} \right. ;\) \( \left\{ \begin{array}{l}2x + y = 0\\x + y - 1 = 0\end{array} \right.\).
Giải các hệ này ta được tọa độ các đỉnh tam giác là \((0 ; 0), (2 ; -1), (-1 ; 2).\)
Giả sử \(A(0 ; 0), B(2 ; -1), C(-1 ; 2).\) Suy ra
\(\overrightarrow {AB} = (2 ; - 1) ,\) \( \overrightarrow {AC} = ( - 1 ; 2), \) \( \overrightarrow {BC} = ( - 3 ; 3). AB = AC = \sqrt 5 \) nên tam giác \(ABC\) cân tại \(A\).
\(\begin{array}{l}\cos A = \cos (\overrightarrow {AB} , \overrightarrow {AC} )\\ = \dfrac{{2.( - 1) + ( - 1).2}}{{\sqrt {{2^2} + {1^2}} .\sqrt {{1^2} + {2^2}} }} = - \dfrac{4}{5} \\ \Rightarrow \widehat A \approx {143^0}8'\\ \Rightarrow \widehat B = \widehat C \approx {18^0}26'\end{array}\)
bởi truc lam 23/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời