Gọi G là trọng tâm của tam giác ABC. Hãy phân tích vectơ OG theo ba vectơ \(\overrightarrow {OA};\,\overrightarrow {OB} ;\,\overrightarrow {OC} \) .Từ đó hãy tính tọa độ điểm G theo tọa độ của A, B và C.
Câu trả lời (1)
-
Ta có:
Với G là trọng tâm của tam giác ABC và điểm O ta có:
\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} \) (phần 3b trang 15 SGK Hình học 10)
\(\begin{array}{l} \Rightarrow \overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\\ \Rightarrow \overrightarrow {OG} = \frac{1}{3}\overrightarrow {OA} + \frac{1}{3}\overrightarrow {OB} + \frac{1}{3}\overrightarrow {OC} \end{array}\)
Mà
\(\begin{array}{l}\overrightarrow {OA} = \left( {{x_A};{y_A}} \right),\overrightarrow {OB} = \left( {{x_B};{y_B}} \right),\\\overrightarrow {OC} = \left( {{x_C};{y_C}} \right)\\ \Rightarrow \left\{ \begin{array}{l}\frac{1}{3}\overrightarrow {OA} = \left( {\frac{{{x_A}}}{3};\frac{{{y_A}}}{3}} \right)\\\frac{1}{3}\overrightarrow {OB} = \left( {\frac{{{x_B}}}{3};\frac{{{y_B}}}{3}} \right)\\\frac{1}{3}\overrightarrow {OC} = \left( {\frac{{{x_C}}}{3};\frac{{{y_C}}}{3}} \right)\end{array} \right.\\ \Rightarrow \overrightarrow {OG} = \frac{1}{3}\overrightarrow {OA} + \frac{1}{3}\overrightarrow {OB} + \frac{1}{3}\overrightarrow {OC} \\ = \left( {\frac{{{x_A}}}{3} + \frac{{{x_B}}}{3} + \frac{{{x_C}}}{3};\frac{{{y_A}}}{3} + \frac{{{y_B}}}{3} + \frac{{{y_C}}}{3}} \right)\\ = \left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\end{array}\)
Vậy \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)
bởi Bảo Anh 20/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời