OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giả sử có S là tập hợp tất cả các giá trị của tham số m để đồ thị hàm số \(y = {x^2} + 5x + 2m\) cắt trục Ox tại hai điểm phân biệt A, B thỏa mãn OA = 4OB. Tổng các phần tử của S bằng:

A. \(\dfrac{{43}}{9}\)                           B. \(\dfrac{{68}}{9}\)

C. \( - \dfrac{{41}}{9}\)               D. \( - \dfrac{{32}}{9}\)

  bởi Hữu Nghĩa 15/07/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Xét phương trình hoành độ giao điểm \({x^2} + 5x + 2m = 0\) (*).

    Để đồ thị hàm số \(y = {x^2} + 5x + 2m\) cắt trục Ox tại 2 điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt \( \Leftrightarrow \Delta  = 25 - 8m > 0\) \( \Leftrightarrow m < \dfrac{{25}}{8}\).

    Gọi \({x_1};{x_2}\) là hai nghiệm phân biệt của phương trình (*) \( \Rightarrow A\left( {{x_1};0} \right)\) và \(B\left( {{x_2};0} \right)\).

    Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 5\\{x_1}{x_2} = 2m\end{array} \right.\) (**).

    Theo bài ra ta có:

    OA = 4OB

    \( \Leftrightarrow \left| {{x_1}} \right| = 4\left| {{x_2}} \right| \Leftrightarrow \left[ \begin{array}{l}{x_1} = 4{x_2}\\ - {x_1} = 4{x_2}\end{array} \right.\)

    TH1; \({x_1} = 4{x_2}\), thay vào hệ (**) ta có:

    \(\left\{ \begin{array}{l}{x_2} + 4{x_2} = 5\\{x_2}.4{x_2} = 2m\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 1\\4 = 2m\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 1\\m = 2\,\,\left( {tm} \right)\end{array} \right.\).

    TH2; \( - {x_1} = 4{x_2}\), thay vào hệ (**) ta có:

    \(\left\{ \begin{array}{l}{x_2} - 4{x_2} = 5\\{x_2}.\left( { - 4{x_2}} \right) = 2m\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_2} =  - \dfrac{5}{3}\\ - \dfrac{{100}}{9} = 2m\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_2} =  - \dfrac{5}{3}\\m =  - \dfrac{{50}}{9}\,\,\left( {tm} \right)\end{array} \right.\).

    \( \Rightarrow S = \left\{ {2; - \dfrac{{50}}{9}} \right\}\).

    Vậy tổng các phần tử của S bằng \(2 + \left( { - \dfrac{{50}}{9}} \right) =  - \dfrac{{32}}{9}\).

    Đáp án D.

      bởi Sasu ka 15/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF