OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh vtAI=1/2vtAB+1/2vtAC biết I là trùng điểm BC

Cho tam giác ABC, G là trọng tâm, I là trung điểm BC, CMR:

a) \(\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

b) \(\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

  bởi Lê Trung Phuong 05/11/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    Với $I$ là trung điểm của $BC$ thì \(\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)

    Ta có:

    \(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{AI}+\overrightarrow{IC}\)

    \(=2\overrightarrow{AI}+(\overrightarrow{IB}+\overrightarrow{IC})\)

    \(=2\overrightarrow{AI}\)

    \(\Rightarrow \overrightarrow{AI}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\) (đpcm)

    b) Gọi giao điểm của $AG$ với $BC$ là $T$

    \(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AG}+\overrightarrow{GB}+\overrightarrow{AG}+\overrightarrow{GC}\)

    \(=2\overrightarrow{AG}+\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{AG}+\overrightarrow{GI}+\overrightarrow{IB}+\overrightarrow{GI}+\overrightarrow{IC}\)

    \(=2\overrightarrow{AG}+2\overrightarrow{GI}\)

    Theo tính chất đường trung tuyến thì \(\overrightarrow{AG}=2\overrightarrow{GI}\) nên:

    \(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AG}+\overrightarrow{AG}=3\overrightarrow{AG}\)

    \(\Rightarrow \overrightarrow{AG}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

      bởi Nguyễn Phương Linh 05/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF