OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hypebol \((H): { \dfrac{x}{4}^2} - \dfrac{{{y^2}}}{5} = 1\) và đường thẳng \(\Delta : x - y + 4 = 0\). Chứng minh rằng \(\Delta \) luôn cắt \((H)\) tại hai điểm \(M, N\) thuộc hai nhánh khác nhau của \((H) (x_M < x_N)\)

  bởi Pham Thi 22/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \((H):  \dfrac{{{x^2}}}{4} -  \dfrac{{{y^2}}}{5}\)

    \(= 1    \Leftrightarrow   5{x^2} - 4{y^2} - 20 = 0\).

    \({a^2} = 4   \Rightarrow   a = 2 , \) \( {b^2} = 5   \Rightarrow   b = \sqrt {5  } ,\) \(  {c^2} = {b^2} + {a^2} = 9   \Rightarrow   c = 3\).

    \((H)\) có hai nhánh : nhánh trái ứng với \(x \le  - 2\), nhánh phải ứng với \(x \ge 2\). Hoành độ giao điểm của \((H)\) và \(\Delta \) là nghiệm của phương trình :

    \(5{x^2} - 4{(x + m)^2} - 20 = 0\) hay  \({x^2} - 8mx - 4({m^2} + 5) = 0\).        (1)

    Phương trình (1) luôn có hai nghiệm phân biệt trái dấu với mọi \(m\). Do đó \(\Delta \) luôn cắt \((H)\) tại hai điểm \(M\) và \(N\) thuộc hai nhánh khác nhau.

    Theo giả thiết \(x_M < x_N\) nên \(M\) thuộc nhánh trái, \(N\) thuộc nhánh phải.

      bởi Hữu Nghĩa 23/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF