Cho biết các số thực x,y thỏa mãn \({{\rm{x}}^2} + {y^2} + xy = 3\). Hãy tìm giá trị lớn nhất, giá trị nhỏ nhất của \(P = {x^4} + {y^4} + 2\left( {{x^2} + {y^2}} \right) + 12xy\).
Cho biết các số thực x,y thỏa mãn \({{\rm{x}}^2} + {y^2} + xy = 3\). Hãy tìm giá trị lớn nhất, giá trị nhỏ nhất của \(P = {x^4} + {y^4} + 2\left( {{x^2} + {y^2}} \right) + 12xy\).
Câu trả lời (1)
-
\(\begin{array}{l}{x^2} + {y^2} + xy = 3\\ \Rightarrow \left\{ \begin{array}{l}{\left( {x + y} \right)^2} = 3 + xy \ge 0 \Rightarrow xy \ge - 3\\{\left( {x - y} \right)^2} = 3 - 3xy \ge 0 \Rightarrow xy \le 1\end{array} \right.\\ \Rightarrow - 3 \le xy \le 1\end{array}\)
\(\begin{array}{l}P = {x^4} + {y^4} + 2\left( {{x^2} + {y^2}} \right) + 12xy\\ = {\left( {{x^2} + {y^2}} \right)^2} - 2{x^2}{y^2} + 2\left( {{x^2} + {y^2}} \right) + 12xy\\ = {\left( {3 - xy} \right)^2} + 2\left( {3 - xy} \right) + 12xy - 2{x^2}{y^2}\\ = - {x^2}{y^2} + 4xy + 15\end{array}\)
Đặt \(xy = t\)
\( \Rightarrow P = P\left( t \right) = - {t^2} + 4t + 15\)
Ta tìm GTLN, GTNN của hàm số \(P\left( t \right)\) trên \(\left[ { - 3;1} \right]\)
Hàm số \(P\left( t \right)\) đồng biến trên \(\left( { - \infty ;2} \right)\) nên đồng biến trên \(\left[ { - 3;1} \right]\). Do đó,
\(\begin{array}{l}MaxP = P\left( 1 \right) = 18 \Leftrightarrow \left\{ \begin{array}{l}xy = 1\\x = y\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = y = 1\\x = y = - 1\end{array} \right.\\MinP = P\left( { - 3} \right) = - 6 \Leftrightarrow \left\{ \begin{array}{l}xy = - 3\\x = - y\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = - y = \sqrt 3 \\x = - y = - \sqrt 3 \end{array} \right.\end{array}\)
bởi Bùi Anh Tuấn 15/07/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời