Cho ba đường thẳng \({\Delta _1}:3x + 4y - 1 = 0\); \({\Delta _2}:4x + 3y - 8 = 0\), \(d:2x + y - 1 = 0\). Xác định tọa độ tâm \(I\) của đường tròn \(\left( C \right)\) biết rằng \(I\) nằm trên \(d\) và \(\left( C \right)\) tiếp xúc với \({\Delta _1}\) và \({\Delta _2}\).
Câu trả lời (1)
-
\(\left( C \right)\) tiếp xúc với \({\Delta _1},{\Delta _2}\) nếu tâm \(I\) nằm trên đường phân giác của \({\Delta _1},{\Delta _2}\).
TH1: \(I \in {d_1} \Rightarrow I = d \cap {d_1}\). Tọa độ của \(I\) thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}x - y - 7 = 0\\2x + y - 1 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{8}{3}\\y = - \dfrac{{13}}{3}\end{array} \right.\)
TH2: \(I \in {d_2} \Rightarrow I = d \cap {d_2}\). Tọa độ của \(I\) thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}x + y - \dfrac{9}{7} = 0\\2x + y - 1 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = - \dfrac{2}{7}\\y = \dfrac{{11}}{7}\end{array} \right.\)
Suy ra \({I_1}\left( {\dfrac{8}{3}; - \dfrac{{13}}{3}} \right)\), \({I_2}\left( { - \dfrac{2}{7};\dfrac{{11}}{7}} \right)\).
bởi Choco Choco 22/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời