Biểu diễn hình học tập nghiệm của hệ bất phương trình hai ẩn sau: \(\left\{ {\begin{array}{*{20}{c}} {\frac{x}{3} + \frac{y}{2} - 1 < 0}\\ {x + \frac{1}{2} - \frac{{3y}}{2} \le 2}\\ {x \ge 0} \end{array}} \right.\)
Câu trả lời (1)
-
Ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
\dfrac{x}{3} + \dfrac{y}{2} - 1 < 0\\
x + \dfrac{1}{2} - \dfrac{{3y}}{2} \le 2\\
x \ge 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\dfrac{{2x + 3y - 6}}{6} < 0\\
\dfrac{{2x + 1 - 3y - 4}}{2} \le 0\\
x \ge 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
2x + 3y - 6 < 0\\
2x - 3y - 3 \le 0\\
x \ge 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
2x + 3y < 6\\
2x - 3y \le 3\\
x \ge 0
\end{array} \right.
\end{array}\)Ta vẽ các đường thẳng 2x + 3y = 6 (\(d_1\)); 2x – 3y = 3 (\(d_2\)); x = 0 (trục tung).
Điểm B(1; 0) có tọa độ thỏa mãn tất cả các bất phương trình trong hệ nên ta gạch đi các nửa mặt phẳng bờ (\(d_1\)); (\(d_2\)) và trục tung không chứa điểm B.
Miền không bị gạch chéo (tam giác MNP, kể cả cạnh MP và NP, không kể cạnh MN) là miền nghiệm của hệ bất phương trình đã cho.
bởi can tu 19/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời