OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm m để đồ thị (C) của hàm số cắt đường thẳng \(\Delta :y=-x+2m\) tại hai điểm A, B phân biệt sao cho \(AB=\sqrt{2}\)

Cho hàm số: \(y=\frac{x+1}{2x-1}\). Tìm m để đồ thị (C) của hàm số cắt đường thẳng \(\Delta :y=-x+2m\) tại hai điểm A, B phân biệt sao cho \(AB=\sqrt{2}\)

  bởi Lê Minh 08/02/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Phương trình hoành độ giao điểm của (C) và Δ là:

    \(\frac{x+1}{2x-1}=-x+2m\)

    \(\Leftrightarrow \left\{\begin{matrix} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! x\neq \frac{1}{2}\\2x^{2}-4mx+2m+1=0\; \; \; (*) \end{matrix}\right.\)

    Để (C) và Δ cắt nhau tại A, B phân biệt thì (*) có hai nghiệm phân biệt khác \(\frac{1}{2}\)

    \(\Leftrightarrow m\in (-\infty ;\frac{1-\sqrt{3}}{2})\cup (\frac{1+\sqrt{3}}{2};+\infty )\)

    Giả sử \(A(x_{1};-x_{1}+2m),B(x_{2};-x_{2}+2m)\). Khi đó ta có:

    \(\left\{\begin{matrix} x_{1}+x_{2}=2m\\x_{1}x_{2}=\frac{2m+1}{2} \end{matrix}\right.\)

    Từ giả thiết ta có:

    \(2(x_{2}-x_{1})^{2}=2\Leftrightarrow (x_{1}+x_{1})^{2}-4x_{1}x_{2}=1\Leftrightarrow 4m^{2}-2(2m-1)=1\Leftrightarrow m=\frac{1}{2})\; \; (TM)\)

      bởi Kim Ngan 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF