-
Câu hỏi:
Trong mặt phẳng tọa độ Oxy cho hình bình hành OABC, C nằm trên Ox. Khẳng định nào sau đây là đúng?
-
A.
\(\overrightarrow {AB} \) có tung độ khác 0
-
B.
A và B có tung độ khác nhau
-
C.
C có hoành độ bằng 0
-
D.
xA + xC - xB = 0
Lời giải tham khảo:
Đáp án đúng: D
Vì OABC là hình bình hành nên:
\(\begin{array}{*{20}{l}}
{\overrightarrow {AB} = \overrightarrow {OC} }\\
{ \Leftrightarrow {x_B} - {x_A} = {x_C}}\\
{ \Leftrightarrow {x_A} + {x_C} - {x_B} = 0}
\end{array}\)Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Biết tam giác ABC vuông tại A. AB=3, AC=4. Độ lớn của vectơ tổng |vec{AB}+vec{AC}| bằng:
- Cho hình vẽ sau, độ lớn của vectơ tổng vec{a}+vec{b}+vec{c} là:
- Tọa độ trọng tâm G của tam giác ABC có tọa độ các đỉnh A(2;1), B(3;0), C(-3;-3) là:
- Trong mặt phẳng tọa độ cho điểm A(-1;5) và điểm B(-6;4). Tọa độ điểm C đối xứng với A qua B là:
- Cho hình vẽ sau, hãy tính |vec{a}-2vec{b}+4vec{c}|
- Cho tứ giác ABCD. Số các vectơ khác 0→ có điểm đầu và điểm cuối là đỉnh của tứ giác bằng:
- Cho lục giác đều ABCDEF có tâm O.
- Trong mặt phẳng tọa độ Oxy cho A(5; 2), B(10; 8). Tọa độ vectơ AB là:
- Cho hình chữ nhật ABCD có AB = 3, BC = 4. Độ dài của vectơ \(\overrightarrow {AC} \) là:
- Trong mặt phẳng tọa độ Oxy cho hình bình hành OABC, C nằm trên Ox.