-
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, tính khoảng cách d từ điểm A(1;-2;3) đến đường thẳng \(\Delta :\frac{{x - 10}}{5} = \frac{{y - 2}}{1} = \frac{{z + 2}}{1}.\)
-
A.
\(d = \sqrt {\frac{{1361}}{{27}}}\)
-
B.
\(d = 7\)
-
C.
\(d =\frac{13}{2}\)
-
D.
\(d = \sqrt {\frac{{1358}}{{27}}}\)
Lời giải tham khảo:
Đáp án đúng: D
Đường thẳng \(\Delta\) có VTCP \(\overrightarrow u = \left( {5;1;1} \right)\).
Gọi điểm \(M\left( {10;2; - 2} \right) \in \Delta\).
Ta có \(\overrightarrow {AM} = \left( {9;4; - 5} \right)\)
Suy ra \(\left[ {\overrightarrow {AM} ;\overrightarrow u } \right] = \left( {9; - 34; - 11} \right).\)
\({d_{\left( {A,\Delta } \right)}} = \frac{{\left| {\left[ {\overrightarrow {AM} ;\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}} = \sqrt {\frac{{1358}}{{27}}} .\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Trong không gian với hệ tọa độ Oxyz cho A(1;0;2) B(2;-1;3). Viết phương trình đường thẳng AB.
- Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;3;-4) và hai đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y - 2}}{3} = \frac{{z - 3}}{1} {d_2}:\frac{{x + 1}}{3} = \frac{{y - 2}}{1} = \frac{{z + 3}}{1} .\) Viết phương trình đường thẳng d đi qua M và vuông góc với cả \(d_1\) và \(d_2\).
- Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):2x + z - 3 = 0\) và \(\left( Q \right):3x - 2y + 6 = 0\). Gọi \(\Delta\) là giao tuyến của \((P )\) và \((Q )\). Tìm Vectơ chỉ phương của đường thẳng \(\Delta\).
- Trong không gian với hệ tọa độ Oxyz, cho \(d:\frac{x}{2} = \frac{y}{4} = \frac{{z + 3}}{1}\) , điểm\(A\left( {3;2;1} \right).\) Viết phương trình đường thẳng \(\Delta\) đi qua A cắt đồng thời vuông góc với đường thẳng d.
- Trong không gian với hệ toạ độ Oxyz, cho tam giác OAB có tọa độ các đỉnh là O(0;0;0), A(4;-2;1), B(2;4;-3). Viết phương trình đường cao kẻ từ đỉnh O của tam giác OAB
- Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \(d:\frac{{x + 2}}{3} = \frac{{y - 1}}{{ - 2}} = \frac{z}{1}\) và \(d':\left\{ \begin{array}{l} x = - 2 + t\\ y = 2 - t\\ z = 0 \end{array} \right.\). Mệnh đề nào dưới đây là đúng?
- Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \(d:\,\frac{{x + 1}}{1} = \frac{y}{{ - 3}} = \frac{{z - 5}}{{ - 1}}\) và mặt phẳng \((P):\,3x - 3y + 2z + 6 = 0\). Mệnh đề nào sau đây đúng?
- Trong không gian với hệ tọa độ Oxyz, tính khoảng cách d từ điểm A(1;-2;3) đến đường thẳng \(\Delta :\frac{{x - 10}}{5} = \frac{{y - 2}}{1} = \frac{{z + 2}}{1}.\)
- Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l} x = - 3t\\ y = - 1 + 2t\\ z = - 2 + t \end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l} x = t\\ y = 3 + 4t\\ z = 5 - 5t \end{array} \right..\) Tìm \(\alpha\) là số đo góc giữa hai đường thẳng \(d_1\) và \(d_2\).
- Trong không gian với hệ trục Oxyz, tìm tọa độ hình chiếu vuông góc của điểm \(A(0;1;2)\) trên mặt phẳng \(\left( P \right):x + y + z = 0.\)