-
Câu hỏi:
Tính P là tích các nghiệm của phương trình \({2^{{x^2} - 1}} - {3^{{x^2}}} = {3^{{x^2} - 1}} - {2^{{x^2} + 2}}.\)
-
A.
\(P= - 2\sqrt 3\)
-
B.
\(P= 2\sqrt 3\)
-
C.
\(P= 3\)
-
D.
\(P= -3\)
Lời giải tham khảo:
Đáp án đúng: D
\(\begin{array}{l} {2^{{x^2} - 1}} - {3^{{x^2}}} = {3^{{x^2} - 1}} - {2^{{x^2} + 2}}\\ \Leftrightarrow {2^{{x^2} - 1}} - {3.3^{{x^2} - 1}} = {3^{{x^2} - 1}} - {2^3}{.2^{{x^2} - 1}}\\ \Leftrightarrow {2^{{x^2} - 1}}(1 + 8) = {3^{{x^2} - 1}}(1 + 3)\\ \Leftrightarrow {\left( {\frac{2}{3}} \right)^{{x^2} - 1}} = \frac{4}{9} \end{array}\)
\(\Leftrightarrow {x^2} - 1 = 2 \Leftrightarrow x = \pm \sqrt 3\)
Vậy tích hai nghiệm \(P=-3\).
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Tính P là tích các nghiệm của phương trình \({2^{{x^2} - 1}} - {3^{{x^2}}} = {3^{{x^2} - 1}} - {2^{{x^2} + 2}}.\)
- Tính S là tổng các nghiệm của phương trình \({16^{\frac{{x + 10}}{{x - 10}}}} = {0,125.8^{\frac{{x + 5}}{{x - 15}}}}.\)
- Cho phương trình \({3^{2x + 1}} - {4.3^x} + 1 = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) trong đó \({x_1} < {x_2}.\) Khẳng định nào sau đây đúng?
- Phương trình \({2^{2 + x}} - {2^{2 - x}} = 15\) có bao nhiêu nghiệm?
- Tìm P là tích các nghiệm của phương trình \({2^{{x^2} - x}} - {2^{x + 8}} = 8 + 2x - {x^2}.\)
- Tìm giá trị của m để phương trình \({2^x} + 3 = m\sqrt {{4^x} + 1}\) có hai nghiệm phân biệt.
- Tìm tập nghiệm S của phương trình \({\log _3}({9^{50}} + 6{x^2}) = {\log _{\sqrt 3 }}({3^{50}} + 2x).\)
- Phương trình \(2{\log _2}\left( {x - 3} \right) = 2 + {\log _{\sqrt 2 }}\sqrt {3 - 2x}\) có bao nhiêu nghiệm?
- Phương trình \(\log _2^2x - 2{\log _4}(4x) - 4 = 0\) có hai nghiệm \({x_1},{x_2}.\)Tính tích \(P = {x_1}.{x_2}.\)
- Tìm m để phương trình \(\log _{\sqrt 3 }^2x - m{\log _{\sqrt 3 }}x + 1 = 0\) có nghiệm duy nhất.