OPTADS360
NONE
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Tìm \(m\) để hai bất phương trình sau có cùng tập nghiệm:  \({x^2}\left( {x - 5} \right) > 4 - 5x\) và \(mx - 5 > x - 2m\).

    • A. 
      \(m = \dfrac{3}{5}\)
    • B. 
      \(m = \dfrac{5}{2}\)
    • C. 
      \(m = \dfrac{3}{2}\)
    • D. 
      \(m = \dfrac{2}{3}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Tìm \(m\) để hai bất phương trình sau có cùng tập nghiệm: \({x^2}\left( {x - 5} \right) > 4 - 5x\) và \(mx - 5 > x - 2m\).

    \(\begin{array}{l}{x^2}\left( {x - 5} \right) > 4 - 5x\\ \Leftrightarrow {x^3} - 5{x^2} > 4 - 5x\\ \Leftrightarrow {x^3} - 5{x^2} + 5x - 4 > 0\\ \Leftrightarrow {x^3} - 4{x^2} - {x^2} + 4x + x - 4 > 0\\ \Leftrightarrow {x^2}\left( {x - 4} \right) - x\left( {x - 4} \right) + \left( {x - 4} \right) > 0\\ \Leftrightarrow \left( {x - 4} \right)\left( {{x^2} - x + 1} \right) > 0\end{array}\)

    Vì  \({x^2} - x + 1\)\( = {x^2} - 2.x.\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4}\) \( = {\left( {x - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4} > 0\) với mọi \(x\)

    \( \Rightarrow x - 4 > 0 \Leftrightarrow x > 4\)

    Lại có:

     \(\begin{array}{l}mx - 5 > x - 2m\\ \Leftrightarrow mx - x > 5 - 2m\\ \Leftrightarrow \left( {m - 1} \right)x > 5 - 2m\end{array}\)

    TH1: \(m - 1 = 0 \Leftrightarrow m = 1 \Rightarrow 0x > 5 - 2.1 = 3\) (vô lý)

    TH2: \(m - 1 \ne 0 \Leftrightarrow m \ne 1\)

    Để hai bất phương trình đã cho có cùng tập nghiệm \(x > 4\) thì \(m - 1 > 0 \Leftrightarrow m > 1\)\( \Rightarrow x > \dfrac{{5 - 2m}}{{m - 1}}\) và \(\dfrac{{5 - 2m}}{{m - 1}} = 4\)

    \(\begin{array}{l} \Rightarrow 5 - 2m = 4m - 4\\ \Leftrightarrow  - 6m =  - 9\\ \Leftrightarrow m = \dfrac{3}{2}\,\,\,\left( {tm} \right)\end{array}\)

    Vậy với \(m = \dfrac{3}{2}\) thì hai bất phương trình có cùng tập nghiệm.

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF