OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Tìm \(m\) để \(d\)cắt \((P)\) tại hai điểm có hoành độ lần lượt là \({x_1};{x_2}\) thỏa mãn \({x_1}^2 + 3{x_2} - 4{x_1}{x_2} = 5.\)  

    • A. 
      \(m = \frac{{24}}{5}\) 
    • B. 
      \(m = 5\) 
    • C. 
      \(m = 2\) 
    • D. 
      \(m = \frac{4}{5}\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    Xét phương trình hoành độ giao điểm của \(d\) và \(\left( P \right)\) là: \(3x - m + 4 = {x^2} \Leftrightarrow {x^2} - 3x + m - 4 = 0\;\;(*)\)

    Đường  thẳng \(d\) cắt \(\left( P \right)\) tại hai điểm phân biệt \( \Leftrightarrow \left( * \right)\) có hai nghiệm phân biệt \({x_1};\;{x_2}\)

    \( \Leftrightarrow \Delta  \ge 0 \Leftrightarrow 9 - 4(m - 4) \ge 0 \Leftrightarrow  - 4m + 25 \ge 0 \Leftrightarrow m \le \frac{{25}}{4}\)

    Áp dụng định lý Vi-et ta có:  \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 3}\\{{x_1}{x_2} = m - 4}\end{array}} \right.\)

    Theo đề bài ta có :

     \(\begin{array}{l}{x_1}^2 + 3{x_2} - 4{x_1}{x_2} = 5 \Leftrightarrow {x_1}^2 + \left( {{x_1} + {x_2}} \right){x_2} - 4{x_1}{x_2} = 5\\ \Leftrightarrow {x_1}^2 + {x_1}{x_2} + {x_2}^2 - 4{x_1}{x_2} = 5 \Leftrightarrow {x_1}^2 - 3{x_1}{x_2} + {x_2}^2 = 5\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 5{x_1}{x_2} = 5 \Leftrightarrow 9 - 5(m - 4) = 5\\ \Leftrightarrow 9 - 5m + 20 = 5 \Leftrightarrow m = \frac{{24}}{5}\;\;(tm).\end{array}\)

    Vậy  \(m = \frac{{24}}{5}\) thỏa mãn bài toán.

    Chọn A.

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF