-
Câu hỏi:
Tam giác ABC có \(AB = \frac{{\sqrt 6 - \sqrt 2 }}{2},BC = \sqrt 3 ,CA = \sqrt 2 \). Gọi D là chân đường phân giác trong góc \(\widehat A\). Khi đó góc \(\widehat {ADB}\) bằng bao nhiêu độ?
-
A.
\(45^\circ \)
-
B.
\(60^\circ \)
-
C.
\(75^\circ \)
-
D.
\(90^\circ \)
Lời giải tham khảo:
Đáp án đúng: C
Theo định lí hàm cosin, ta có:
\(\begin{array}{l}
\cos \widehat {BAC} = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = - \frac{1}{2}\\
\Rightarrow \widehat {BAC} = 120^\circ \Rightarrow \widehat {BAD} = 60^\circ \\
\cos \widehat {ABC} = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {ABC} = 45^\circ
\end{array}\)Trong ΔABD có \(\widehat {BAD} = 60^\circ ,\widehat {ABD} = 45^\circ \Rightarrow \widehat {ADB} = 75^\circ \).
Đáp án đúng là: C
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Tam giác ABC có \(AB = 5,BC = 7,CA = 8\). Số đo góc \(\widehat A\) bằng:
- Tam giác ABC có \(AB = 2,AC = 1\) và \(\widehat A = {60^0}\). Tính độ dài cạnh BC.
- Tam giác ABC có đoạn thẳng nối trung điểm của AB và BC bằng 3, cạnh AB = 9 và ˆ A C B = 60 ° ACB^=60°. Tính độ dài cạnh cạnh BC.
- Tam giác ABC có A B = √ 2 , A C = √ 3 AB=2, AC=3 và ˆ C = 45 ° C^=45°. Tính độ dài cạnh BC
- Tam giác ABC có \(\widehat B = 60^\circ ,\widehat C = 45^\circ \) và AB = 5. Tính độ dài cạnh AC.
- Cho hình thoi ABCD cạnh bằng 1cm và có \(\widehat {BAD} = {60^0}\). Tính độ dài AC.
- Tam giác ABC có \(AB = 4,BC = 6,AC = 2\sqrt 7 \). Điểm M thuộc đoạn BC sao cho MC = 2MB. Tính độ dài cạnh AM..
- Tam giác ABC có \(AB = \frac{{\sqrt 6 - \sqrt 2 }}{2},BC = \sqrt 3 ,CA = \sqrt 2 \). Gọi D là chân đường phân giác trong góc \(\widehat A\). Khi đó góc \(\widehat {ADB}\) bằng bao nhiêu độ?
- Tam giác ABC có \(AB = 3,{\rm{\;}}AC = 6\) và \(\widehat A = {60^0}\). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
- Tam giác MPQ vuông tại P. Trên cạnh MQ lấy hai điểm E, F sao cho các góc ˆ M P E , ˆ E P F , ˆ F P Q MPE^, EPF^, FPQ^ bằng nhau. Đặt M P = q , P Q = m , P E = x , P F = y MP=q, PQ=m, PE=x, PF=y. Trong các hệ thức sau, hệ thức nào đúng?