-
Câu hỏi:
Tam giác ABC có a = 21, b = 17, c = 10 .Diện tích của tam giác ABC bằng:
-
A.
\({S_{\Delta ABC}} = 16\)
-
B.
\({S_{\Delta ABC}} = 48\)
-
C.
\({S_{\Delta ABC}} = 24\)
-
D.
\({S_{\Delta ABC}} = 84\)
Lời giải tham khảo:
Đáp án đúng: D
Ta có:
Nửa chu vi của tam giác ABC là:
\(p = \frac{{21 + 17 + 10}}{2} = 24\) (đơn vị độ dài).
Do đó
Diện tích tam giác ABC là:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {24\left( {24 - 21} \right)\left( {24 - 17} \right)\left( {24 - 10} \right)} = 84\) (đơn vị diện tích).
Đáp án đúng là: D
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Tam giác ABC có \(AB = 3,AC = 6,{\rm{\;}}\widehat {BAC} = 60^\circ \). Tính diện tích tam giác ABC.
- Tam giác ABC có \(AC = 4,{\rm{\;}}\widehat {BAC} = 30^\circ ,{\rm{\;}}\widehat {ACB} = 75^\circ \). Tính diện tích tam giác ABC.
- Tam giác ABC có a = 21, b = 17, c = 10 .Diện tích của tam giác ABC bằng:
- Tam giác ABC có \(AB = 3,{\rm{\;}}AC = 6,{\rm{\;}}\widehat {BAC} = 60^\circ \). Tính độ dài đường cao h kẻ từ đỉnh A xuống cạnh BC của tam giác.
- Tam giác ABC có \(AC = 4,{\rm{\;}}\widehat {ACB} = 60^\circ \). Tính độ dài đường cao h xuất phát từ đỉnh A của tam giác.
- Tam giác ABC có a = 21, b = 17, c = 10 . Gọi B’ là hình chiếu vuông góc của B trên cạnh AC. Tính BB’.
- Tam giác ABC có AB = 8cm, AC = 18cm và có diện tích bằng \(64c{m^2}\). Giá trị sinA bằng:
- Hình bình hành ABCD có \(AB = a,{\rm{\;}}BC = a\sqrt 2 \) và \(\widehat {BAD} = {45^0}\). Khi đó hình bình hành có diện tích bằng:
- Tam giác ABC vuông tại A có AB = AC = 30cm. Hai đường trung tuyến BF và CE cắt nhau tại G. Diện tích tam giác GFC bằng:
- Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng: