-
Câu hỏi:
Phép chia đa thức \(3{x^5} + 5{x^4}-1\) cho đa thức \({x^2}\; + {\rm{ }}x{\rm{ }} + {\rm{ }}1\) được đa thức thương là:
-
A.
3x3 – 2x2 – 5x + 3
-
B.
3x3 + 2x2 – 5x + 3
-
C.
3x3 – 2x2 – x + 3
-
D.
2x – 4
Lời giải tham khảo:
Đáp án đúng: B
Đa thức thương là: 3x3 + 2x2 – 5x + 3
Đáp án cần chọn là: B
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Phép chia đa thức \(2{x^4}-3{x^3} + 3x-2\) cho đa thức \({x^2}-1\) được đa thức dư là
- Phép chia đa thức sau \((4{x^4} + 3{x^2}-2x + 1)\) cho đa thức \({x^2} + 1\) được đa thức dư là:
- Phép chia đa thức \(3{x^5} + 5{x^4}-1\) cho đa thức \({x^2}\; + {\rm{ }}x{\rm{ }} + {\rm{ }}1\) được đa thức thương là:
- Điền vào chỗ trống sau \(({x^3} + {x^2}-12:\left( {x--12} \right) = \ldots \)
- Phần dư của phép chia đa thức \({x^4}--2{x^3} + {x^2}--3x + 1\) cho đa thức \(x^2 + 1\) có hệ số tự do là
- Thương của phép chia đa thức \((3{x^4}--2{x^3} + 4x--2{x^2}--8)\) cho đa thức \((x^2 – 2)\) có hệ số tự do là
- Biết phần dư của phép chia đa thức \(({x^5} + {x^3} + {x^2} + 2)\) cho đa thức \(({x^3} + 1)\) là số tự nhiên a. Chọn câu đúng.
- Thương và phần dư của phép chia đa thức \(2{x^3}-3{x^2}-3x-2\) cho đa thức \({x^2} + 1\) lần lượt là
- Kết quả của phép chia \((2{a^3} + 7a{b^2}-7{a^2}-2{b^3}):\left( {2a-b} \right)\) là
- Kết quả của phép chia \(({x^4}-{x^3}y + {x^2}{y^2}-x{y^3}):({x^2} + {y^2})\) là