OPTADS360
NONE
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Để xác định độ tự cảm \(L\) và điện trở trong \(r\) của một cuộn dây, một học sinh mắc nối tiếp điện trở \({\rm{R  =  10 \Omega }}\) với cuộn dây như hình (hình a). Dùng vôn kế đo các điện áp trên mạch với các vị trí \(U_{ab}\), \(U_{bc}\), \(U_{ac}\), sau đó giản đồ Frenen với các véc-tơ tương ứng theo đúng tỉ lệ như hình (hình b). Độ tự cảm và điện trở trong của cuộn dây trong thí nghiệm này gần giá trị nào nhất? Biết tần số góc của mạch \(\omega =100\pi (rad/s)\)

    • A. 
      \(L = 0,159 H\), \(r = 4,8\) \({\rm{\Omega }}\)
    • B. 
      \(L = 30,3 mH\), \(r = 4,3\) \(\Omega \)
    • C. 
      \(L = 26,54 mH\), \(r = 3,3\) \({\rm{\Omega }}\)
    • D. 
      \(L = 13,8 mH\), \(r = 5,3\) \({\rm{\Omega }}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Đáp án : C

    Từ đồ thị ta có:

    \({U_{bc}} = \dfrac{{\sqrt 5 }}{3}{U_{ab}} \\\Leftrightarrow Z_L^2 + {r^2} = \dfrac{5}{9}{R^2}\)

    \({U_{ac}} = \dfrac{{2\sqrt 5 }}{3}{U_{ab}} \\\Leftrightarrow {\left( {R + r} \right)^2} + Z_L^2 = \dfrac{{20}}{9}{R^2}\)

    \( \Rightarrow {R^2} + 2Rr + \dfrac{5}{9}{R^2} = \dfrac{{20}}{9}{R^2} \\\Leftrightarrow \dfrac{1}{3}{R^2} = Rr \\\Leftrightarrow r = \dfrac{R}{3} = \dfrac{{10}}{3}(\Omega ) \approx 3,{\rm{3 (\Omega )}}\)

    \( \Leftrightarrow Z_L^2 + \dfrac{{{R^2}}}{9} = \dfrac{5}{9}{R^2} \\\Rightarrow {Z_L} = \dfrac{2}{3}R = \dfrac{{20}}{3}(\Omega ) \\\Rightarrow L = \dfrac{{{Z_L}}}{\omega } = \dfrac{{20}}{{3.100\pi }} = 0,02{\rm{1 (H)}}\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF