OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\log _{3}^{2}x-m{{\log }_{9}}{{x}^{2}}+2-m=0\) có nghiệm \(x\in \left[ 1;9 \right]\)?

    • A. 
      1
    • B. 
      5
    • C. 
      3
    • D. 
      2

    Lời giải tham khảo:

    Đáp án đúng: A

    Điều kiện: \(x>0\).

    Ta có: \(\log _{3}^{2}x-m{{\log }_{9}}{{x}^{2}}+2-m=0\)\( \Leftrightarrow \log _{3}^{2}x-m{{\log }_{3}}x+2-m=0\).

    Đặt \(t={{\log }_{3}}x\), với \(x\in \left[ 1;9 \right]\)\( \Rightarrow t\in \left[ 0;2 \right]\).

    Phương trình đã cho trở thành: \({{t}^{2}}-mt+2-m=0\)\( \Leftrightarrow m=\frac{{{t}^{2}}+2}{t+1}\,\,\left( 1 \right)\).

    Xét hàm số \(f\left( t \right)=\frac{{{t}^{2}}+2}{t+1}\) với \(t\in \left[ 0;2 \right]\) ta có:

    \({f}'\left( t \right)=\frac{{{t}^{2}}+2t-2}{{{\left( t+1 \right)}^{2}}}\),

    \({f}'\left( t \right)=0\Leftrightarrow {{t}^{2}}+2t-2=0\).

    \(\Leftrightarrow \left[ \begin{align} & t=-1+\sqrt{3}\in \left[ 0;2 \right] \\ & t=-1-\sqrt{3}\notin \left[ 0;2 \right] \\ \end{align} \right.\)

    Bảng biến thiên:

    Khi đó: phương trình đã cho có nghiệm \(x\in \left[ 1;9 \right]\) \(\Leftrightarrow \)Phương trình \(\left( 1 \right)\) có nghiệm \(t\in \left[ 0;2 \right]\).

    \(\Leftrightarrow -2+2\sqrt{3}\le m\le 2\).

    Mặt khác, do \(m\in \mathbb{Z}\) nên \(m=2\).

    Vậy có một giá trị nguyên của tham số \(m\) thỏa yêu cầu bài toán.

    Chọn A

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF