OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Có tất cả bao nhiêu cặp số nguyên \(\left( x\,;\,y \right)\) thỏa mãn \({{2.3}^{x-1}}-{{\log }_{3}}\left( {{3}^{x-2}}+2y \right)=6y-x\,+1\) và \({{2022}^{-1}}\le y\le 2022\)?

    • A. 
      13
    • B. 
      15
    • C. 
      7
    • D. 
      6

    Lời giải tham khảo:

    Đáp án đúng: C

    + Điều kiện \({{3}^{x-2}}+2y>0\).

    + Phương trình tương đương: \({{2.3}^{x-1}}-{{\log }_{3}}\left( {{3}^{x-1}}+6y \right)=6y-x\,\,\,\left( * \right)\).

    + Đặt: \(u={{\log }_{3}}\left( {{3}^{x-1}}+6y \right)\Rightarrow {{3}^{x-1}}+6y={{3}^{u}}\) \(\Rightarrow 6y={{3}^{u}}-{{3}^{x-1}}\).

    Ta có: \(\left( * \right)\Leftrightarrow {{2.3}^{x-1}}-u={{3}^{u}}-{{3}^{x-1}}-x\)

                     \(\Leftrightarrow {{3.3}^{x-1}}+x={{3}^{u}}+u\)\(\Leftrightarrow {{3}^{x}}+x={{3}^{u}}+u\).

    + Hàm \(f\left( t \right)={{3}^{t}}+t\) đồng biến trên \(\mathbb{R}\) nên

    \({{3}^{x}}+x={{3}^{u}}+u\Leftrightarrow x=u\Leftrightarrow x={{\log }_{3}}\left( {{3}^{x-1}}+6y \right)\)

                           \(\Leftrightarrow {{3}^{x-1}}+6y={{3}^{x}}\)\(\Leftrightarrow y={{3}^{x-2}}\) (thỏa đk \({{3}^{x-2}}+2y>0\)).

    + Do \({{2022}^{-1}}\le y\le 2022\) nên \({{2022}^{-1}}\le {{3}^{x-2}}\le 2022\)

                         \(\Leftrightarrow {{\log }_{3}}{{2022}^{-1}}\le x-2\le {{\log }_{3}}2022\)

                         \(\Leftrightarrow {{\log }_{3}}{{2022}^{-1}}+2\le x\le {{\log }_{3}}2022+2\)

                         \(\Rightarrow -5

    + Do \(x\) nguyên, suy ra \(x\in \{-4;-3;....;8\}\).

                         \(x\in \{-4;-3;-2;-1;0;1\}\) suy ra \(y\) không nguyên do \(0

                         \(x\in \{2;3;4;5;6;7;8\}\) suy ra \(y\) nguyên do \(y\in \{{{3}^{0}};{{3}^{1}};{{3}^{2}};{{3}^{3}};{{3}^{4}};{{3}^{5}};{{3}^{6}}\}\).

    + Vậy có 7 cặp số nguyên \(\left( x\,;\,y \right)\) thỏa YCBT.

    Chọn C

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF