OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữa nhật, \(AB=2,\,AD=2\sqrt{3}\), tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc đáy, k/c giữa 2 đường thẳng \(AB\) và \(SC\)bằng \(3\). Tính thể tích của khối chóp \(S.ABCD\) bằng?

    • A. 
      \(16\sqrt{3}\).         
    • B. 
      \(\frac{16\sqrt{3}}{3}\).                     
    • C. 
      \(24\sqrt{3}\).      
    • D. 
      \(8\sqrt{3}\).

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi \(H\) là trung điểm của \(AB\) ta có:

    \(\left. \begin{align} & \left( SAB \right)\bot \left( ABCD \right) \\ & \left( SAB \right)\cap \left( ABCD \right)=AB \\ & SH\subset \left( SAB \right) \\ & SH\bot AB \\ \end{align} \right\}\\ \Rightarrow SH\bot \left( ABCD \right)\)

    Gọi \(M\) là trung điểm của \(CD\), ta có:

    \(\left. \begin{align} & CD\bot HM \\ & \,CD\bot SH \\ \end{align} \right\}\)\(\Rightarrow CD\bot \left( SHM \right);\,CD\subset \left( SCD \right)\Rightarrow \left( SHM \right)\bot \left( SCD \right)\)  theo giao tuyến \(SM\);

    Ta có \(AB\text{//}CD\subset \left( SCD \right)\)\( \Rightarrow AB\text{//}\left( SCD \right)\);

    \(\Rightarrow {{d}_{\left( AB,SC \right)}}\)\( ={{d}_{\left[ AB,\left( SCD \right) \right]}}\)\( ={{d}_{\left[ H,\left( SCD \right) \right]}}\)  ;

    Kẻ \(HK\bot SM\,\Rightarrow HK\bot \left( SCD \right)\Rightarrow {{d}_{\left[ H,\left( SCD \right) \right]}}=HK\);

    Ta có \(\Delta SHM\)vuông tại \(H,\,\,HK\) là đường cao  nên

    \(\frac{1}{H{{K}^{2}}}\)\( =\frac{1}{S{{H}^{2}}}+\frac{1}{H{{M}^{2}}}\Rightarrow \,\frac{1}{S{{H}^{2}}}\)\( =\frac{1}{9}-\frac{1}{12}\)\( =\frac{1}{36}\Rightarrow SH=6\);

    Vậy \({{V}_{S.ABCD}}\)\( =\frac{1}{3}.{{S}_{ABCD}}.SH\)\( =\frac{1}{3}.2.2\sqrt{3}.6=8\sqrt{3}\).

    Chọn D

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF