-
Câu hỏi:
Cho tam giác ABC có các đường cao BD và CE cắt nhau tại H. Gọi M là giao của AH với BC. Chọn câu đúng.
-
A.
ΔHBE∽ΔHCD
-
B.
ΔABD∽ΔACE
-
C.
Cả A, B đều đúng.
-
D.
Cả A, B đều sai.
Lời giải tham khảo:
Đáp án đúng: C
Xét ΔHBE và ΔHCD có:
\(\begin{array}{l} \widehat {BDC} = \widehat {CEB} = {90^0}\\ \widehat {EHB} = \widehat {DHC} \end{array}\)
(2 góc đối đỉnh)
\( \Rightarrow {\rm{\Delta }}HBE \sim {\rm{\Delta }}HCD(g - g)\)
Xét ΔABD và ΔACE có
\(\begin{array}{l} \widehat {AEC} = \widehat {BDA} = {90^ \circ }\\ \hat A:chung\\ \to {\rm{\Delta }}ABD \sim {\rm{\Delta }}ACE{\mkern 1mu} \left( {g - g} \right) \end{array}\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho 2 tam giác ABC và DEF có A = 400, B = 800, E = 400, D = 600. Chọn câu đúng.
- Cho tam giác ABC vuông tại A có: AB = 5, AC = 12 Trên cạnh BC lấy điểm M sao cho BM = 5/13BC. Qua M kẻ đường thẳng vuông góc với AC tại N. Độ dài MN là:
- Chọn câu đúng. Tính giá trị của x trong hình dưới đây:
- Cho hình bình hành ABCD có I là giao điểm của AC và BD. E là một điểm bất kì thuộc BC, qua E kẻ đường thẳng song song với AB và cắt BD,AC,AD lại G,H,F . Chọn kết luận sai?
- Cho hình bình hành ABCD , điểm F trên cạnh BC . Tia AF cắt BD và DC lần lượt ở E và G. Chọn khẳng định sai.
- Cho tam giác ABC có đường cao AD, CE và trực tâm H. Chọn câu rả lời đúng nhất?
- Cho tam giác ABC có các đường cao BD và CE cắt nhau tại H. Gọi M là giao của AH với BC. Chọn câu đúng.
- Cho tam giác ABC cân tại A . Trên cạnh AC lấy điểm M , trên đoạn thẳng BM lấy điểm K sao cho góc BCK = góc ABM. Tam giác MBC đồng dạng với tam gíac nào
- Cho hình thang vuông ABCD, góc A = góc D = 900 có BC vuông góc BD, AB = 4cm,CD = 9cm. Độ dài BD là:
- Cho hình thang ABCD (AB//CD) có góc ADB = góc BCD, AB = 2cm , \(BD=\sqrt5 cm\), ta có: