OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho tam giác ABC cân ở A. Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của góc ACB. Tính các góc của tam giác ABC

     

    • A. 
      \(\widehat A = {30^0},\widehat B = \widehat C = {75^0}\)
    • B. 
      \(\widehat A = {40^0},\widehat B = \widehat C = {70^0}\)
    • C. 
      \(\widehat A = {36^0},\widehat B = \widehat C = {72^0}\)
    • D. 
      \(\widehat A = {70^0},\widehat B = \widehat C = {55^0}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Vì đường trung trực AC cắt AB tại D nên suy ra DA = DC (tính chất đường trung trực của đoạn thẳng)

    => Tam giác ADC là tam giác cân tại D (dấu hiệu nhận biết tam giác cân)

    \(\widehat A = \widehat {{C_2}}\left( 1 \right)\) (tính chất tam giác cân)

    Vì CD là đường phân giác của \(\widehat {ACB} \Rightarrow \widehat {{C_1}} = \widehat {{C_2}} = \frac{{\widehat C}}{2}\left( 2 \right)\) (Tính chất tia phân giác)

    Từ (1) và (2) \(\widehat {ACB} = 2\widehat A\)

    Lại có tam giác ABC cân tại A (gt) \( \Rightarrow \widehat B = \widehat {ACB}\) \( \Rightarrow \widehat B = 2\widehat A\)

    Xét tam giác ABC có:

    \(\begin{array}{l}
    \widehat A + \widehat B + \widehat {ACB} = {180^0} \Rightarrow \widehat A + 2\widehat A + 2\widehat A = {180^0}\\
     \Rightarrow 5\widehat A = {180^0} \Rightarrow \widehat A = {36^0} \Rightarrow \widehat B = \widehat C = 2\widehat A = {2.36^0} = {72^0}
    \end{array}\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

AMBIENT-ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF