OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho lăng trụ đều ABC.EFH có tất cả các cạnh bằng a. Gọi S là điểm đối xứng của A qua BH. Thể tích khối đa diện ABCSFH bằng

    • A. 
      \(\frac{{{a^3}}}{6}\)
    • B. 
      \(\frac{{\sqrt 3 {a^3}}}{6}\)
    • C. 
      \(\frac{{{a^3}}}{3}\)
    • D. 
      \(\frac{{\sqrt 3 {a^3}}}{3}\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi I là hình chiếu của A lên BH. Khi đó S đối xứng với A qua BH hay S đối xứng với A qua I.

    Chia khối đa diện ABCSFH thành hai khối chóp A.BCHFS.BCHF thì ta có \({V_{ABCHFS}} = {V_{A.BCHF}} + {V_{S.BCHF}}\) 

    Lại có SI = AI và \(SA \cap \left( {BCHF} \right)\) tại I nên \(d\left( {A;\left( {BCHF} \right)} \right) = d\left( {S,\left( {BCHF} \right)} \right)\).

    Suy ra \({V_{A.BCHF}} = {V_{S.BCHF}} \Rightarrow {V_{ABCHFS}} = 2{V_{A.BCHF}}\) 

    Dễ thấy \({V_{A.BCHF}} = {V_{ABC.EFH}} - {V_{A.EFH}} = {V_{ABC.EFH}} - \frac{1}{3}{V_{ABC.EFH}} = \frac{2}{3}{V_{ABC.EFH}}\) 

    Mà \({V_{ABC.EFH}} = AE.{S_{ABC}} = a.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{4}\) nên

    \(\begin{array}{l}
    {V_{A.BCHF}} = \frac{2}{3}{V_{ABC.EFH}} = \frac{2}{3}.\frac{{{a^3}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{6}\\
     \Rightarrow {V_{ABCHFS}} = 2{V_{A.BCHF}} = 2.\frac{{{a^3}\sqrt 3 }}{6} = \frac{{{a^3}\sqrt 3 }}{3}
    \end{array}\)

    Vậy \({V_{ABCHFS}} = \frac{{{a^3}\sqrt 3 }}{3}\).

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF