OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hình lập phương ABCD.A'B'C'D'. Gọi N, P là các điểm lần lượt thuộc các cạnh BC và CD sao cho BN = 3NC và DP = 3PC. Mặt phẳng \(\left( A'NP \right)\) chia khối lập phương thành 2 phần có thể tích là \({{V}_{1}}\) và \({{V}_{2}}\), trong đó \({{V}_{1}}<{{V}_{2}}\). Tính tỷ số \(\frac{{{V}_{1}}}{{{V}_{2}}}\)?

    • A. 
      \(\frac{{{V}_{1}}}{{{V}_{2}}}=\frac{289}{472}.\)  
    • B. 
      \( \frac{{{V}_{1}}}{{{V}_{2}}}=\frac{289}{383}\)  
    • C. 
      \( \frac{{{V}_{1}}}{{{V}_{2}}}=\frac{25}{47}\).
    • D. 
      \(\frac{{{V}_{1}}}{{{V}_{2}}}=\frac{25}{49}.\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Thiết diện của hình lập phương ABCD.A'B'C'D' cắt bởi mặt phẳng \(\left( A'NP \right) \) là ngũ giác A'MPNB

    Ta có \(\left\{ \begin{align} & \frac{PC}{PD}=\frac{CN}{DF} \\ & BN=3NC \\ \end{align} \right.\)

    \(\Rightarrow DF=\frac{3}{4}AD\Rightarrow AF=\frac{7}{4}AD\)

    Tương tự \(\left\{ \begin{align} & \frac{NC}{NB}=\frac{PC}{BE} \\ & BN=3NC \\ \end{align} \right.\) \(\Rightarrow BE=\frac{3}{4}BC\Rightarrow AE=\frac{7}{4}BC\)

    Ta lại có \(\frac{FD}{FA}=\frac{DM}{A{A}'}=\frac{3}{7}\Rightarrow DM=\frac{3}{7}A{A}'\), tương tự \(BQ=\frac{3}{7}A{A}'\)

    \({{V}_{1}}={{V}_{{A}'.AEF}}-{{V}_{M.DPF}}-{{V}_{Q.PNE}}={{V}_{{A}'.AEF}}-2.{{V}_{M.DPF}}=\frac{1}{6}A{A}'.AF.AE-\frac{1}{6}DM.DF.DP-\frac{1}{6}BQ.BN.BE\)

    Chọn A

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF