OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, \(SD = \frac{{a\sqrt {17} }}{2}\), hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Tính chiều cao h của khối chóp H.SBD theo a.

    • A. 
       \(h = \frac{{\sqrt 3 a}}{2}\)
    • B. 
       \(h = \frac{{a\sqrt 3 }}{7}\)
    • C. 
       \(h = \frac{{a\sqrt {21} }}{2}\)
    • D. 
       \(h = \frac{{3a}}{5}\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Từ H kẻ HI vuông góc với BD \(\left( {I \in BD} \right)\) và \(HK \bot SI\)  

    Suy ra \(HK \bot \left( {SBD} \right).\)

    Ta có:

    \(SH = \sqrt {S{D^2} - H{D^2}} = a\sqrt 3\) và 

    \(HI = \frac{{AC}}{4} = \frac{{a\sqrt 2 }}{4}\)

    Suy ra  \(HK = \frac{{SH.IH}}{{\sqrt {S{H^2} + I{H^2}} }} \)

    \(= \frac{{\frac{{{a^2}\sqrt 6 }}{4}}}{{\frac{{5a\sqrt 2 }}{4}}} = \frac{{a\sqrt 3 }}{5}\)

    Do đó chiều cao của khối chóp H.SBD là:

    \(h = \frac{{a\sqrt 3 }}{5}.\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

AMBIENT-ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF