OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy (ABCD) và SA=a. Điểm M thuộc cạnh SA sao cho \(\frac{{SM}}{{SA}} = k\). Xác định k sao cho mặt phẳng (BMC) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau.

    • A. 
      \(k = \frac{{ - 1 + \sqrt 3 }}{2}\)
    • B. 
      \(k = \frac{{ - 1 + \sqrt 5 }}{2}\)
    • C. 
      \(k = \frac{{ - 1 + \sqrt 2 }}{2}\)
    • D. 
      \(k = \frac{{ - 1 + \sqrt 5 }}{2}\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Vì BC//AD nên mặt phẳng (BMC) cắt (SAD) theo đoạn thẳng MN//AD (N thuộc SD).

    \(\frac{{{V_{S.BMC}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}} = k\)

    \( \frac{{{V_{S.MNC}}}}{{{V_{S.ADC}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SD}} = {k^2} \)

    \(\Rightarrow {V_{S.MNC}} = {k^2}.{V_{S.ADC}} = \frac{{{k^2}}}{2}.{V_{S.ABCD}}\)

    \(\Rightarrow {V_{S.MBCN}} = \left( {\frac{k}{2} + \frac{{{k^2}}}{2}} \right).{V_{S.ABCD.}}\)

    Để mặt phẳng (BMNC) chia hình chóp thành 2 phần có thể tích bằng nhau thì:

    \(\frac{k}{2} + \frac{{{k^2}}}{2} = \frac{1}{2} \Leftrightarrow {k^2} + k - 1 = 0 \)

    \(\Leftrightarrow k = \frac{{ - 1 + \sqrt 5 }}{2}(Do\,k > 0)\).

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

AMBIENT-ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF