OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hàm số bậc 4 sau \(f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e\ \left( a,b,c,d,e\in \mathbb{R} \right)\) và hàm số bậc 3 sau \(g\left( x \right)=m{{x}^{3}}+n{{x}^{2}}+px+q\ \left( m,n,p,q\in \mathbb{R} \right)\) có đồ thị \(y=f'\left( x \right)\) và \(y=g'\left( x \right)\) như hình:

    Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\) bằng 96  và \(f\left( 2 \right)=g\left( 2 \right)\). Diện tích hình phẳng giới hạn bởi các đường \(y=f\left( x \right),y=g\left( x \right)\) và \(x=0,\ x=2\) bằng?

    • A. 
      \(\frac{136}{15}.\)      
    • B. 
      \(\frac{272}{15}.\)    
    • C. 
      \(\frac{136}{5}.\)    
    • D. 
      \(\frac{68}{15}.\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Đồ thị các hàm số \(y=f'\left( x \right)\) và \(y=g'\left( x \right)\) cắt nhau tại ba điểm có hoành độ là \(-1;\ 1;3\)

    Khi và chỉ khi PT \(f'(x)-g'(x)=0\) có ba nghiệm là \(-1;\ 1;3\)

    \(\Rightarrow f'(x)-g'(x)=k\left( x+1 \right)\left( x-1 \right)\left( x-3 \right)=k\left( {{x}^{3}}-3{{x}^{2}}-x+3 \right)\) với \(k\ne 0.\)

    \(\Rightarrow f(x)-g(x)=\int{\left( f'(x)-g'(x) \right)dx}=\int{k\left( {{x}^{3}}-3{{x}^{2}}-x+3 \right)dx}\)\(=k\left( \frac{{{x}^{4}}}{4}-{{x}^{3}}-\frac{{{x}^{2}}}{2}+3x+C \right).\)

    Mà \(f\left( 2 \right)=g\left( 2 \right)\Leftrightarrow f\left( 2 \right)-g\left( 2 \right)=0\Rightarrow kC=0\Rightarrow C=0\)

    Hình phẳng giới hạn bởi hai đồ thị hàm số \(y=f'\left( x \right)\) và \(y=g'\left( x \right)\) có diện tích bằng 96.

    \(\Rightarrow 96=-\int\limits_{-1}^{1}{\left( f'(x)-g'(x) \right)dx+}\int\limits_{1}^{3}{\left( f'(x)-g'(x) \right)dx}\)

    \(\Rightarrow 96=-k\int\limits_{-1}^{1}{\left( {{x}^{3}}-3{{x}^{2}}-x+3 \right)dx+}k\int\limits_{1}^{3}{\left( {{x}^{3}}-3{{x}^{2}}-x+3 \right)dx}=-8k\Rightarrow k=-12\)

    \(\Rightarrow f\left( x \right)-g\left( x \right)=-3{{x}^{4}}+12{{x}^{3}}+6{{x}^{2}}-36x\)

    PT \(f\left( x \right)-g\left( x \right)=0\Leftrightarrow -3{{x}^{4}}+12{{x}^{3}}+6{{x}^{2}}-36x=0\) không có nghiệm trong khoảng \(\left( 0;2 \right)\)

    Diện tích hình phẳng giới hạn bởi các đường \(x=0,\ x=2\), \(y=f\left( x \right)\) và \(y=g\left( x \right)\) là

    \(S=\int\limits_{0}^{2}{\left| -3{{x}^{4}}+12{{x}^{3}}+6{{x}^{2}}-36x \right|dx=}\left| \int\limits_{0}^{2}{\left( -3{{x}^{4}}+12{{x}^{3}}+6{{x}^{2}}-36x \right)dx} \right|=\frac{136}{5}.\)

    Chọn C

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF