-
Câu hỏi:
Cho cấp số nhân có 7 số hạng, số hạng thứ tư bằng 6 và số hạng thứ 7 gấp 243 lần số hạng thứ hai. Hãy tìm số hạng còn lại của CSN đó.
-
A.
\({u_1} = \frac{2}{9};{u_2} = \frac{2}{5};{u_3} = 2;{u_5} = 18;{u_6} = 54;{u_7} = 162\)
-
B.
\({u_1} = \frac{2}{7};{u_2} = \frac{2}{3};{u_3} = 2;{u_5} = 18;{u_6} = 54;{u_7} = 162\)
-
C.
\({u_1} = \frac{2}{9};{u_2} = \frac{2}{3};{u_3} = 2;{u_5} = 21;{u_6} = 54;{u_7} = 162\)
-
D.
\({u_1} = \frac{2}{9};{u_2} = \frac{2}{3};{u_3} = 2;{u_5} = 18;{u_6} = 54;{u_7} = 162\)
Lời giải tham khảo:
Đáp án đúng: D
Gọi CSN đó là (un), \(n = \overline {1,7} \). Theo đề bài ta có :
\(\left\{ {\begin{array}{*{20}{c}}{{u_4} = 6}\\{{u_7} = 243{u_2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{u_1}.{q^3} = 6}\\{{u_1}.{q^6} = 243{u_1}.q}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{u_1} = \frac{2}{9}}\\{q = 3}\end{array}} \right.\)
Do đó các số hạng còn lại của cấp số nhân là
\({u_1} = \frac{2}{9};{u_2} = \frac{2}{3};{u_3} = 2;{u_5} = 18;{u_6} = 54;{u_7} = 162\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Dãy số {u_n} = {4.3^n} có phải là cấp số nhân không? Nếu phải hãy xác định số công bội?
- Dãy số {u_n} = 3n - 1 có phải là cấp số nhân không? Nếu phải hãy xác định số công bội?
- Cho cấp số nhân có 7 số hạng, số hạng thứ tư bằng 6 và số hạng thứ 7 gấp 243 lần số hạng thứ hai.
- Tìm x biết 1,{x^2},6 - {x^2} lập thành cấp số nhân.
- Tìm m để phương trình {x^3} - 3m{x^2} + 4mx + m - 2 = 0 có ba nghiệm lập thành cấp số nhân.
- Trong các dãy số sau, dãy số nào là cấp số nhân?
- Cho cấp số nhân (un) có u1=5; u2 = 8. Tìm u4
- Cho một cấp số nhân có 5 số hạng với công bội dương. Biết rằng số hạng thứ hai bằng 3, số hạng thứ tư bằng 6.
- Cho tam giác ABC cân (AB=AC), có cạnh đáy BC, đường cao AH, cạnh bên AB theo thứ tự đo lập thành một cấp số nhân.
- Tìm các số (x,y) biết y < 0 và các số x+6y, 5x+2y, 8x+y theo thứ tự lập thành cấp số cộng đồng thời các số \(x + \fr