Giải bài 91 trang 67 SBT Toán 7 Cánh diều tập 1
Cho các số a, b, c thỏa mãn \(\dfrac{a}{{2{\rm{ }}020}} = \dfrac{b}{{2{\rm{ }}021}} = \dfrac{c}{{2{\rm{ }}022}}\). Chứng tỏ rằng:
\(4(a - b)(b - c) = {(c - a)^2}\).
Hướng dẫn giải chi tiết
Phương pháp giải:
Ta chứng minh bằng cách áp dụng tính chất dãy tỉ số bằng nhau ở dữ kiện bài toán cho.
Lời giải chi tiết:
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{{2{\rm{ }}020}} = \dfrac{b}{{2{\rm{ }}021}} = \dfrac{c}{{2{\rm{ }}022}} = \dfrac{{a - b}}{{2{\rm{ }}020 - 2{\rm{ }}021}} = \dfrac{{b - c}}{{2{\rm{ 021}} - 2{\rm{ }}022}} = \dfrac{{c - a}}{{2{\rm{ 022}} - 2{\rm{ }}020}}\).
Suy ra:
\(\begin{array}{l}\dfrac{{a - b}}{{ - 1}} = \dfrac{{b - c}}{{ - 1}} = \dfrac{{c - a}}{2} \to \left\{ \begin{array}{l}c - a = - 2(b - c)\\c - a = - 2(a - b)\end{array} \right.\\ \Rightarrow {(c - a)^2} = - 2(b - c). - 2(a - b) = 4(a - b)(b - c)\end{array}\)
Vậy \(4(a - b)(b - c) = {(c - a)^2}\).
-- Mod Toán 7 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.