OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 67 trang 88 SBT Toán 7 Cánh diều tập 2 - CD

Giải bài 67 trang 88 SBT Toán 7 Cánh diều tập 2

Cho tam giác ABC cân tại A. Đường trung trực của đoạn thẳng AC cắt cạnh AB tại D. Biết CD là tia phân giác của góc ACB. Tính số đo mỗi góc của tam giác ABC.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 67

Phương pháp giải

 Sử dụng tia phân giác của một góc và tổng ba góc của một tam giác để tìm số đo của các góc trong tam giác ABC.

Lời giải chi tiết

Đường trung trực của AC cắt AB tại D nên DA = DC.

Do đó tam giác ADC cân tại D.

Suy ra \(\hat A = {\hat C_1}\)

 Vì CD là tia phân giác của góc C nên \({\hat C_1} = {\hat C_2} = \frac{1}{2}\widehat {ACB}\)

 Suy ra \(\hat A = {\hat C_1} = {\hat C_2} = \frac{1}{2}\widehat {ACB}\)

 Hay \(\widehat {ACB} = 2\hat A\)

 Vì tam giác cân ABC nên \(\hat B = \widehat {ACB}\) (hai góc ở đáy).

Do đó \(\hat B = \widehat {ACB} = 2\hat A.\)

Mà \(\hat A + \hat B + \widehat {ACB} = 180^\circ \) (tổng ba góc của tam giác ABC).

Suy ra \(\hat A + 2\hat A + 2\hat A = 180^\circ \)ˆA+2ˆA+2ˆA=180° hay \(5\hat A = 180^\circ \)

Nên \(\hat A = 36^\circ \)

Khi đó \(\hat B = \widehat {ACB} = 2.36^\circ  = 72^\circ \)

 Vậy ∆ABC có \(\hat B = \hat C = 72^\circ ,\hat A = 36^\circ .\)

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 67 trang 88 SBT Toán 7 Cánh diều tập 2 - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF