OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 6 trang 15 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST

Giải bài 6 trang 15 SGK Toán 7 Chân trời sáng tạo tập 2

Hai chiếc nhẫn bằng kim loại đồng chất có thể tích là \(3c{m^3}\) và \(2c{m^3}\). Hỏi mỗi chiếc nhẫn nặng bao nhiêu gam, biết rằng hai chiếc nhẫn nặng 96,5 g? (Cho biết khối lượng và thể tích là hai đại lượng ti lệ thuận với nhau)

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 6

Phương pháp giải

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

Lời giải chi tiết

Gọi trọng lượng chiếc nhẫn \(3c{m^3}\) là A (g) và chiếc còn lại là B (g) ( A,B > 0)

Theo đề bài ta có A tỉ lệ thuận với B theo thể tích nên ta có A : B = 3 : 2 \( \Rightarrow \dfrac{A}{B} = \dfrac{3}{2} \Rightarrow \dfrac{A}{3} = \dfrac{B}{2}\)

Theo đề bài 2 chiếc nhẫn nặng 96,5g nên A+B =96,5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có : \( \Rightarrow \dfrac{A}{3} = \dfrac{B}{2} = \dfrac{{A + B}}{5}= \dfrac{{96,5}}{5}\)

\( \Rightarrow 5A = 3.96,5 \Rightarrow A = 57,9\)

\( \Rightarrow B = 96,5 - 57,9 = 38,6\)

Vậy chiếc nhẫn có thể tích \(3c{m^3}\) có khối lượng là 57,9 g và chiếc còn lại có khối lượng là 38,6 g 

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 6 trang 15 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF