Giải bài 10 trang 36 SBT Toán 7 Chân trời sáng tạo tập 1
Tìm số vô tỉ trong các số sau:
\(\sqrt 5 \);\(\sqrt {\dfrac{{25}}{4}} \);\(\sqrt {\dfrac{{144}}{{49}}} \)
Hướng dẫn giải chi tiết Bài 10
Phương pháp giải
Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.
Số hữu tỉ là số viết được dưới dạng \(\dfrac{a}{b}\) (với \(a,b \in Z; b \ne 0\))
Lời giải chi tiết
Ta có: \(\sqrt 5 \) ≈2,236067977... là số thập phân vô hạn không tuần hoàn nên \(\sqrt 5 \) là số vô tỉ.
Ta có : \({\left( {\dfrac{5}{2}} \right)^2} = \dfrac{5}{2}.\dfrac{5}{2} = \dfrac{{25}}{4}\left( {\dfrac{5}{2} > 0} \right)\)nên \(\sqrt {\dfrac{{25}}{4}} = \dfrac{5}{2} \Rightarrow - \sqrt {\dfrac{{25}}{4}} = - \dfrac{5}{2}\).Mà \( - \dfrac{5}{2}\)là số hữu tỉ nên \(\sqrt {\dfrac{{25}}{4}} \)là số hữu tỉ
Ta có: \({\left( {\dfrac{{12}}{7}} \right)^2} = \dfrac{{12}}{7}.\dfrac{{12}}{7} = \dfrac{{144}}{{49}}\left( {\dfrac{{12}}{7} > 0} \right)\) nên \(\sqrt {\dfrac{{144}}{{49}}} = \dfrac{{12}}{7}\) . Mà \(\dfrac{{12}}{7}\) là số hữu tỉ. Do đó \(\sqrt {\dfrac{{144}}{{49}}} \) là số hữu tỉ.
-- Mod Toán 7 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.