OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 8 trang 145 SGK Toán 12 NC

Bài tập 8 trang 145 SGK Toán 12 NC

Tìm nguyên hàm của các hàm số sau:

\(\begin{array}{l}
a)f\left( x \right) = {x^2}\left( {\frac{{{x^3}}}{{18}} - 1} \right)\\
b)f\left( x \right) = \frac{1}{{{x^2}}}{\rm{sin}}\frac{1}{x}\cos \frac{1}{x}\\
c)f\left( x \right) = {x^3}{e^x}\\
d)f(x) = {e^{\sqrt {3x - 9} }}
\end{array}\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a) Đặt \(u = \frac{{{x^3}}}{{18}} - 1 \Rightarrow du = \frac{1}{6}{x^2}dx \)

\(\Rightarrow {x^2}dx = 6du\)

Do đó:

\(\begin{array}{l}
\int {{x^2}} {\left( {\frac{{{x^3}}}{{18}} - 1} \right)^5}dx = \int 6 {u^5}du\\
 = {u^6} + C = {\left( {\frac{{{x^3}}}{{18}} - 1} \right)^6} + C
\end{array}\)

b) Đặt \(u = \sin\frac{1}{x} \Rightarrow du =  - \frac{1}{{{x^2}}}\cos\frac{1}{x}dx \)

\(\Rightarrow \frac{1}{{{x^2}}}\cos\frac{1}{x}dx =  - du\)

\(\begin{array}{l}
 \Rightarrow \int {\frac{1}{{{x^2}}}} \sin \frac{1}{x}\cos \frac{1}{x}dx\\
 =  - \int u du =  - \frac{{{u^2}}}{2} + C\\
 =  - \frac{1}{2}{\sin ^2}\left( {\frac{1}{x}} \right) + C
\end{array}\)

c) Đặt \(\left\{ \begin{array}{l}
u = {x^3}\\
dv = {e^x}dx
\end{array} \right. \)

\(\Rightarrow \left\{ \begin{array}{l}
du = 3{x^2}dx\\
v = {e^x}
\end{array} \right. \)

\(\Rightarrow I = \int {x^3}{e^x}dx = {x^3}{e^x} - 3\int {x^2}{e^x}dx(1)\)

Tính \({I_1} = \int {x^2}{e^x}dx\)

Đặt \(\left\{ \begin{array}{l}
u = x\\
dv = {e^x}dx
\end{array} \right. \)

\(\Rightarrow \left\{ \begin{array}{l}
du = dx\\
v = {e^x}
\end{array} \right. \)

\(\Rightarrow {I_2} = x{e^x} - \int {e^x}dx = {e^x}\left( {x - 1} \right) + C\)

Thay I2 vào (2) ta được:

\(\begin{array}{l}
{I_1} = {x^2}{e^x} - 2{e^x}(x - 1)\\
 = {e^x}({x^2} - 2x + 2) + C
\end{array}\)

Thay I1 vào (1) ta được:

\(\begin{array}{l}
I = {x^3}ex - 3{e^x}({x^2} - 2x + 2)\\
 = {e^x}({x^3} - 3{x^2} + 6x - 6) + C
\end{array}\)

d) Đặt 

\(\begin{array}{*{20}{l}}
\begin{array}{l}
u = \sqrt {3x - 9}  \Rightarrow {u^2} = 3x - 9\\
 \Rightarrow 2udu = 3dx \Rightarrow dx = \frac{{2udu}}{3}
\end{array}
\end{array}\)

Do đó: 

\(\begin{array}{*{20}{l}}
\begin{array}{l}
\int {{e^{\sqrt {3x - 9} }}} dx = \frac{2}{3}\int u {e^u}du\\
 = \frac{2}{3}{e^u}\left( {u - 1} \right) + C
\end{array}\\
{ = \frac{2}{3}{e^{\sqrt {3x - 9} }}(\sqrt {3x - 9}  - 1) + C}
\end{array}\)

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 8 trang 145 SGK Toán 12 NC HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF