Thực hành 2 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1
Xét tính liên tục của hàm số \(y = \sqrt {x - 1} + \sqrt {2 - x} \) trên \(\left[ {1;2} \right]\).
Hướng dẫn giải chi tiết Thực hành 2
Phương pháp giải:
Bước 1: Xét tính liên tục của hàm số trên khoảng \(\left( {a;b} \right)\).
Bước 2: Tính giới hạn \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right)\) và so sánh \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right)\) với \(f\left( a \right)\), \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right)\) với \(f\left( b \right)\).
Bước 3: Kết luận.
Lời giải chi tiết:
Đặt \(f\left( x \right) = \sqrt {x - 1} + \sqrt {2 - x} \)
Với mọi \({x_0} \in \left( {1;2} \right)\), ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \\= \mathop {\lim }\limits_{x \to {x_0}} \left( {\sqrt {x - 1} + \sqrt {2 - x} } \right)\\ = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {x - 1} + \mathop {\lim }\limits_{x \to {x_0}} \sqrt {2 - x} \\ = \sqrt {\mathop {\lim }\limits_{x \to {x_0}} x - \mathop {\lim }\limits_{x \to {x_0}} 1} + \sqrt {\mathop {\lim }\limits_{x \to {x_0}} 2 - \mathop {\lim }\limits_{x \to {x_0}} x} \\= \sqrt {{x_0} - 1} + \sqrt {2 - {x_0}} \\= f\left( {{x_0}} \right)\end{array}\)
Vậy hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( {1;2} \right)\).
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \\= \mathop {\lim }\limits_{x \to {1^ + }} \left( {\sqrt {x - 1} + \sqrt {2 - x} } \right) \\= \mathop {\lim }\limits_{x \to {1^ + }} \left( {\sqrt {x - 1} + \sqrt {2 - x} } \right)\\ = \sqrt {\mathop {\lim }\limits_{x \to {1^ + }} x - \mathop {\lim }\limits_{x \to {1^ + }} 1} + \sqrt {\mathop {\lim }\limits_{x \to {1^ + }} 2 - \mathop {\lim }\limits_{x \to {1^ + }} x} \\= \sqrt {1 - 1} + \sqrt {2 - 1} = 1 = f\left( 1 \right)\end{array}\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \\= \mathop {\lim }\limits_{x \to {2^ - }} \left( {\sqrt {x - 1} + \sqrt {2 - x} } \right)\\ = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\sqrt {x - 1} + \sqrt {2 - x} } \right)\\ = \sqrt {\mathop {\lim }\limits_{x \to {2^ - }} x - \mathop {\lim }\limits_{x \to {2^ - }} 1} + \sqrt {\mathop {\lim }\limits_{x \to {2^ - }} 2 - \mathop {\lim }\limits_{x \to {2^ - }} x} \\= \sqrt {2 - 1} + \sqrt {2 - 2} = 1 \\= f\left( 2 \right)\end{array}\)
Vậy hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {1;2} \right]\).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Thực hành 1 trang 81 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 2 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 1 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 3 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 3 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 4 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 2 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 4 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 5 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 3 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 1 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 2 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 4 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 6 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 5 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 6 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 7 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 8 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 9 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 10 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 11 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 12 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.