OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 8 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 8 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo

Cho hai hàm số fx=2x     khi x<1x2+x khi x1gx=2xx2 khi x<1x2+a khi x1.

Tìm giá trị của tham số a sao cho hàm số h(x) = f(x) + g(x) liên tục tại x = 1?

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài tập 8

Ta có: hx=fx+gx=2+xx2 khi x<1x+a khi x1.

limx1hx=limx12+xx2=2+112=2;

limx1+hx=limx1+x+a=1+a;

h1=1+a.

Hàm số h(x) liên tục tại x = 1 khi và chỉ khi limx1hx=limx1+hx=h1.

2=1+aa=1

Vậy a = 1.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 8 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF