OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Thực hành 2 trang 69 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 2 trang 69 SGK Toán 11 Chân trời sáng tạo tập 2

Tứ diện \(ABCD\) có \(AB \bot \left( {BCD} \right)\). Trong tam giác \(BCD\) vẽ đường cao \(BE\) và \(DF\) cắt nhau tại \(O\). Trong mặt phẳng \(\left( {ACD} \right)\) vẽ \({\rm{D}}K\) vuông góc với \(AC\) tại \(K\). Gọi \(H\) là trực tâm của tam giác \(ACD\). Chứng minh rằng:

a) \(\left( {ADC} \right) \bot \left( {ABE} \right)\) và \(\left( {ADC} \right) \bot \left( {DFK} \right)\);

b) \(OH \bot \left( {ADC} \right)\).

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Thực hành 2

Phương pháp giải:

‒ Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng.

‒ Cách chứng minh đường thẳng vuông góc với mặt phẳng:

+ Cách 1: chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.

+ Cách 2: sử dụng định lí: Nếu hai mặt phẳng cắt nhau cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba.

 

Lời giải chi tiết:

a) Ta có:

\(\left. \begin{array}{l}AB \bot \left( {BC{\rm{D}}} \right) \Rightarrow AB \bot C{\rm{D}}\\BE \bot CE\end{array} \right\} \Rightarrow C{\rm{D}} \bot \left( {ABE} \right)\)

Lại có \(C{\rm{D}} \subset \left( {A{\rm{D}}C} \right)\)

Vậy \(\left( {ADC} \right) \bot \left( {ABE} \right)\)

\(\begin{array}{l}\left. \begin{array}{l}AB \bot \left( {BC{\rm{D}}} \right) \Rightarrow AB \bot DF\\DF \bot BC\end{array} \right\} \Rightarrow DF \bot \left( {ABC} \right)\\\left. \begin{array}{l} \Rightarrow DF \bot AC\\DK \bot AC\end{array} \right\} \Rightarrow AC \bot \left( {DFK} \right)\end{array}\)

Lại có \(AC \subset \left( {A{\rm{D}}C} \right)\)

Vậy \(\left( {ADC} \right) \bot \left( {DFK} \right)\)

 

b) Ta có:

\(\left. \begin{array}{l}\left( {ADC} \right) \bot \left( {ABE} \right)\\\left( {ADC} \right) \bot \left( {DFK} \right)\\\left( {ABE} \right) \cap \left( {DFK} \right) = OH\end{array} \right\} \Rightarrow OH \bot \left( {ADC} \right)\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Thực hành 2 trang 69 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Hoạt động khám phá 4 trang 67 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 5 trang 68 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Vận dụng 2 trang 69 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 6 trang 69 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 3 trang 71 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Vận dụng 3 trang 71 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 7 trang 71 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 4 trang 72 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Vận dụng 4 trang 72 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 8 trang 72 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 5 trang 73 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Vận dụng 5 trang 73 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 1 trang 73 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 2 trang 73 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 3 trang 73 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 4 trang 74 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 5 trang 74 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 6 trang 74 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Bài tập 1 trang 61 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 2 trang 61 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 3 trang 61 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 4 trang 61 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 5 trang 62 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 6 trang 62 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 7 trang 62 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF