Nếu các em có những khó khăn khi giải các bài tập về Đao hàm từ SGK, Sách tham khảo, Các trang mạng,.... hãy đặt câu hỏi ở đây cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.
Danh sách hỏi đáp (290 câu):
-
A. \(y = {{{x^3} + 1} \over x}\)
B. \(y = {{3\left( {{x^2} + x} \right)} \over {{x^3}}}\)
C.\(y = {{{x^3} + 5x - 1} \over x}\)
D. \(y = {{2{x^2} + x - 1} \over x}\)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hàm số \(y = {x^4} + {x^2} + 1\,(C)\) Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến song song với đường thẳng \(y = 6x - 1\).
25/02/2021 | 1 Trả lời
A. \(y = 6x - 2\)
B. \(y = 6x - 7\)
C. \(y = 6x - 8\)
D. \(y = 6x - 3\)
Theo dõi (0)Gửi câu trả lời Hủy -
Gọi (C ) là đồ thị hàm số \(y = {{{x^2} + 3x + 2} \over {x - 1}}\) Tìm tọa độ các điểm trên (C) mà tiếp tuyến tại đó với (C) vuông góc với đường thẳng có phương trình \(y = x + 4\).
25/02/2021 | 1 Trả lời
A. \((1 + \sqrt 3 ;5 + 3\sqrt 3 )\,\,;\,\,(1 - \sqrt 3 ;5 - 3\sqrt 3 )\)
B. (2; 12)
C. (0;0)
D. (-2;0)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho đồ thị (H): \(y = {{x + 2} \over {x - 1}}\) và điểm \(A \in (H)\) có tung độ y = 4. Hãy lập phương trình tiếp tuyến của (H) tại điểm A.
24/02/2021 | 1 Trả lời
A. \(y = x - 2\)
B. \(y = - 3x - 11\)
C. \(y = 3x + 11\)
D. \(y = - 3x + 10\)
Theo dõi (0)Gửi câu trả lời Hủy -
Phương trình tiếp tuyến của đồ thị hàm số \(y = x{(3 - x)^2}\) tại điểm có hoành độ x = 2 là:
24/02/2021 | 1 Trả lời
A. \(y = - 3x + 8\)
B. \(y = - 3x + 6\)
C. \(y = 3x - 8\)
D. \(y = 3x - 6\)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho chuyển động thẳng xác định bởi phương trình \(s = {t^3} - 3{t^2} - 9t + 2\)(t tính bằng giây; s tính bằng mét). Khẳng định nào sau đây đúng?
25/02/2021 | 1 Trả lời
A. Vận tốc của chuyển động bằng 0 khi t = 0 hoặc t = 2
B. Vận tốc của chuyển động tại thời điểm t = 2 là \(v = 18m/s\)
C. Gia tốc của chuyển động tại thời điểm t = 3 là \(a = 12\,\,m/{s^2}\)
D.Gia tốc của chuyển động bằng 0 khi t = 0
Theo dõi (0)Gửi câu trả lời Hủy -
A. \(12({x^2} + 1)\)
B. \(24({x^2} + 1)\)
C. \(24(5{x^2} + 3)\)
D. \(- 12({x^2} + 1)\)
Theo dõi (0)Gửi câu trả lời Hủy -
A. \(dy = {1 \over {\root 3 \of {{{(x + 1)}^2}} }}dx\)
B. \(dy = {3 \over {\root 3 \of {{{(x + 1)}^2}} }}dx\)
C. \(dy = {2 \over {\root 3 \of {{{(x + 1)}^2}} }}dx\)
D. \(dy = {1 \over {3\root 3 \of {{{(x + 1)}^2}} }}dx\)
Theo dõi (0)Gửi câu trả lời Hủy -
Đạo hàm của \(y = {\sin ^2}4x\) là:
24/02/2021 | 1 Trả lời
A. \(2\sin 8x\)
B. \(8\sin 8x\)
C. \(\sin 8x\)
D. \(4\sin 8x\)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hàm số \(f(x) = \tan \left( {x - {{2\pi } \over 3}} \right)\) Giá trị \(f'(0)\) bằng:
24/02/2021 | 1 Trả lời
A. \(- \sqrt 3 \)
B. 4
C. -3
D. \(\sqrt 3 \)
Theo dõi (0)Gửi câu trả lời Hủy -
Tìm m để các hàm số \(y = {{m{x^3}} \over 3} - m{x^2} + (3m - 1)x + 1\)có \(y' < 0\,\,\,\,\forall x \in R\).
25/02/2021 | 1 Trả lời
A. \(m \le \sqrt 2 \)
B. \(m \le 2\)
C. \(m \le 0\)
D. \(m < 0\)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hàm số \(y = {(2{x^2} + 1)^3}\). Để \(y' \ge 0\) thì x nhận các giá trị thuộc tập nào sau đây:
25/02/2021 | 1 Trả lời
A. \(\emptyset \)
B. \(\left( { - \infty ;0} \right]\)
C. \({\rm{[}}0; + \infty )\)
D. \(R\)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hàm số \(y = 2{x^3} - 3{x^2} - 5\). Các nghiệm của phương trình \(y' = 0\) là:
24/02/2021 | 1 Trả lời
A. \(x = \pm 1\)
B. \(x = - 1;x = {5 \over 2}\)
C. \(x = {{ - 5} \over 2};x = 1\)
D. \(x = 0;x = 1\)
Theo dõi (0)Gửi câu trả lời Hủy -
A. \({{4x + 5} \over {2\sqrt {2{x^2} + 5x - 4} }}\)
B. \({{4x + 5} \over {\sqrt {2{x^2} + 5x - 4} }}\)
C. \({{2x + 5} \over {2\sqrt {2{x^2} + 5x - 4} }}\)
D. \({{2x + 5} \over {\sqrt {2{x^2} + 5x - 4} }}\)
Theo dõi (0)Gửi câu trả lời Hủy -
A. \({{ - 7} \over {3x + 1}}\)
B. \({5 \over {{{(3x + 1)}^2}}}\)
C. \({{ - 7} \over {{{(3x + 1)}^2}}}\)
D. \({5 \over {3x + 1}}\)
Theo dõi (0)Gửi câu trả lời Hủy -
A. \(3{x^5} + {3 \over {{x^2}}} + {1 \over {\sqrt x }}\)
B. \(6{x^5} + {3 \over {{x^2}}} + {1 \over {2\sqrt x }}\)
C. \(3{x^5} - {3 \over {{x^2}}} + {1 \over {\sqrt x }}\)
D. \(6{x^5} - {3 \over {{x^2}}} + {1 \over {2\sqrt x }}\)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hàm số \(f(x)\) xác định trên \(R\) bởi \(f(x) = \root 3 \of x \). Giá trị của \(f'( - 8)\) bằng:
24/02/2021 | 1 Trả lời
A. \({1 \over {12}}\)
B. \({{ - 1} \over {12}}\)
C. \({{ - 1} \over 6}\)
D. \({1 \over 6}\)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hàm số \(f(x)\) liên tục tại \({x_0}\) Đạo hàm của \(f(x)\) tại \({x_0}\) là:
24/02/2021 | 1 Trả lời
A. \(f({x_0})\)
B. \(\mathop {\lim }\limits_{h \to 0} {{f({x_0} + h) - f({x_0})} \over h}\)(nếu tồn tại giới hạn)
C. \({{f({x_0} + h) - f({x_0})} \over h}\)
D. \(\mathop {\lim }\limits_{h \to 0} {{f({x_0} + h) - f({x_0} - h)} \over h}\)(nếu tồn tại giới hạn)
Theo dõi (0)Gửi câu trả lời Hủy -
Tiếp tuyến của đồ thị hàm số \(y = {{2x + 1} \over {x - 1}}\) tại điểm có hoành độ bằng \(2\) có hệ số góc \(k = ?\)
25/02/2021 | 1 Trả lời
A. \(k = - 1\)
B. \(k = - 3\)
C. \(k = 3\)
D. \(k = 5\)
Theo dõi (0)Gửi câu trả lời Hủy -
Giả sử \(h\left( x \right) = 5{\left( {x + 1} \right)^3} + 4\left( {x + 1} \right)\) Tập nghiệm của phương trình \(h''\left( x \right) = 0\) là:
24/02/2021 | 1 Trả lời
A. \(\left[ { - 1;2} \right]\)
B. \(\left( { - \infty ;0} \right]\)
C. \(\left\{ { - 1} \right\}\)
D. \(\emptyset \)
Theo dõi (0)Gửi câu trả lời Hủy -
A. \(y''' = 12x\left( {{x^2} + 1} \right)\)
B. \(y''' = 24x\left( {{x^2} + 1} \right)\)
C. \(y''' = 24x\left( {5{x^2} + 3} \right)\)
D. \(y''' = - 12x\left( {{x^2} + 1} \right)\)
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hàm số \(f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 1000} \right)\) Tính \(f'\left( 0 \right)\)?
25/02/2021 | 1 Trả lời
A. 10000!
B. 1000!
C. 1100!
D. 1110!
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hàm số \(f\left( x \right) = {{{x^2} + \left| {x + 1} \right|} \over x}\) Tính đạo hàm của hàm số tại \({x_0} = - 1\).
24/02/2021 | 1 Trả lời
A. 2
B. 1
C. 0
D. Không tồn tại.
Theo dõi (0)Gửi câu trả lời Hủy -
Cho hàm số \(y = f\left( x \right)\) xác định: \(f\left( x \right) = \left\{ \matrix{{{\sqrt {{x^2} + 1} - 1} \over x}\,\,khi\,\,x \ne 0 \hfill \cr0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0 \hfill \cr} \right.\) Giá trị của \(f'\left( 0 \right)\) bằng:
25/02/2021 | 1 Trả lời
A. \({1 \over 2}\)
B. \(- {1 \over 2}\)
C. \(- 2\)
D. Không tồn tại.
Theo dõi (0)Gửi câu trả lời Hủy -
A. \(y' = {{2x - 2} \over {\sqrt {{x^2} - 2x} }}\)
B. \(y' = {{3{x^2} - 4x} \over {\sqrt {{x^2} - 2x} }}\)
C. \(y' = {{2{x^2} - 3x} \over {\sqrt {{x^2} - 2x} }}\)
D.\(y' = {{2{x^2} - 2x - 1} \over {\sqrt {{x^2} - 2x} }}\)
Theo dõi (0)Gửi câu trả lời Hủy