OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Gọi (C ) là đồ thị hàm số \(y = {{{x^2} + 3x + 2} \over {x - 1}}\) Tìm tọa độ các điểm trên (C) mà tiếp tuyến tại đó với (C) vuông góc với đường thẳng có phương trình \(y = x + 4\).

A. \((1 + \sqrt 3 ;5 + 3\sqrt 3 )\,\,;\,\,(1 - \sqrt 3 ;5 - 3\sqrt 3 )\)

B. (2; 12)

C. (0;0)     

D. (-2;0)

  bởi Phí Phương 25/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Vì  tiếp tuyến của (C) vuông góc với đường thẳng  

     

    nên phương trình tiếp tuyến có hệ số góc k=-1

    Ta có \(y = \dfrac{{{x^2} + 3x + 2}}{{x - 1}}\,\,\,\,suy\,\,ra\,\,\,y' = \dfrac{{{x^2} - 2x - 5}}{{{{\left( {x - 1} \right)}^2}}}\)

    Khi đó y’ = k = -1 hay

      \(\begin{array}{l}\dfrac{{{x^2} + 3x + 2}}{{x - 1}} =  - 1 \\\Rightarrow {x^2} - 2x - 5 =  - {\left( {x - 1} \right)^2}\\ \Rightarrow 2{x^2} - 4x - 4 = 0\end{array}\)

    hoặc \(x = 1 - \sqrt 3 \)

    Với \(x = 1 + \sqrt 3 \) thì \(y = \dfrac{{{x^2} + 3x + 2}}{{x - 1}} = \dfrac{{{{\left( {1 + \sqrt 3 } \right)}^2} + 3\left( {1 + \sqrt 3 } \right) + 2}}{{\left( {1 + \sqrt 3 } \right) - 1}} = 5 + 3\sqrt 3 \)

    Với \(x = 1 - \sqrt 3 \) thì \(y = \dfrac{{{x^2} + 3x + 2}}{{x - 1}} = \dfrac{{{{\left( {1 - \sqrt 3 } \right)}^2} + 3\left( {1 - \sqrt 3 } \right) + 2}}{{\left( {1 - \sqrt 3 } \right) - 1}} = 5 - 3\sqrt 3 \)

    Vậy giao điểm của (C) và đường thẳng  tại điểm

    \(\left( {1 + \sqrt 3 ;5 + 3\sqrt 3 } \right)\)và \(\left( {1 - \sqrt 3 ;5 - 3\sqrt 3 } \right)\)

    Đáp án A

      bởi Anh Trần 25/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF