Vận dụng trang 35 SGK Toán 10 Chân trời sáng tạo tập 2
Trên quầy còn 4 vé xổ số khác nhau. Một khách hàng có bao nhiêu lựa chọn mua một số vé trong các số vé đó? Tính cả trường hợp mua không vé, tức là không mua vé nào.
Hướng dẫn giải chi tiết Vận dụng
Phương pháp giải
Sử dụng công thức nhị thức Newton
Lời giải chi tiết
Mỗi lựa chọn mua vé của khách hàng đó là một tổ hợp chập k của 4 \(\left( {0 \le k \le 4} \right)\). Do đó, tổng số lựa chọn mua vé của khách hàng là
\(\begin{array}{l}C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4\\ = C_4^0{.1^4} + C_4^1{.1^3}.1 + C_4^2{.1^2}{.1^2} + C_4^3{.1.1^3} + C_4^4{.1^4}\\ = {\left( {1 + 1} \right)^4} = {2^4}\\ = 16\end{array}\)
Vậy có tất cả 16 lựa chọn mua một số vé trong số các vé xổ số đó.
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Thực hành 1 trang 35 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 2 trang 35 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 35 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 35 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 35 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 35 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 35 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
-
Hãy xác định hệ số của số hạng chứa \({x^4}\) trong khai triển \({\left( {{x^2} - \dfrac{2}{x}} \right)^n}\) nếu biết tổng các hệ số của ba số hạng đầu trong khai triển đó bằng \(97\).
bởi Huy Hạnh 13/09/2022
Theo dõi (0) 1 Trả lời