Giải bài 8.14 trang 57 SBT Toán 10 Kết nối tri thức tập 2
Trong khai triển của \({(5x - 2)^5}\), số mũ của x được sắp xếp theo lũy thừa tăng dần, hãy tìm hạng tử thứ hai.
Hướng dẫn giải chi tiết Bài 8.14
Phương pháp giải
Áp dụng công thức khai triển
\({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\).
Lời giải chi tiết
\(\begin{array}{l}{(5x - 2)^5} = {(5x)^5} + 5{(5x)^4}.( - 2) + 10{(5x)^3}.{( - 2)^2}\\ + 10{(5x)^2}.{( - 2)^3} + 5(5x).{( - 2)^4} + {( - 2)^5}\end{array}\)
\( = - 32 + 400x - 2000{x^2} + 5000{x^3} - 6250{x^4} + 3125{x^5}\)
Vậy hạng tử thứ 2 với số mũ của x được sắp xếp theo lũy thừa tăng dần là 400x
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Giải bài 8.16 trang 75 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.13 trang 57 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.15 trang 57 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.16 trang 57 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.17 trang 57 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.