Giải bài 7 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1
Cho tam giác MNP có \(MN = 10,MP = 20\) và \(\widehat M = 42^\circ \)
a) Tính diện tích tam giác MNP
b) Gọi O là tâm đường tròn ngoại tiếp tam giác MNP. Tính diện tích tam giác ONP
Hướng dẫn giải chi tiết Bài 7
Phương pháp giải
+ Áp dụng định lí côsin
Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:
\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\{b^2} = {c^2} + {a^2} - 2ca\cos B\\{c^2} = {a^2} + {b^2} - 2ab\cos C\end{array}\)
+ Áp dụng công thức Heron: \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)
Lời giải chi tiết
a) Ta có công thức \(S = \frac{1}{2}ab\sin C = \frac{1}{2}.MN.MP.\sin M\)
\( = \frac{1}{2}.10.20.\sin 42^\circ \simeq 66,91\) (đvdt)
b) O là tâm đường tròn ngoại tiếp tam giác MNP nên ta có:
\(OM = ON = OP = R = \frac{{NP}}{{2\sin M}}\) (*)
Áp dụng định lí côsin ta tính được NP như sau:
\(NP = \sqrt {M{P^2} + M{N^2} - 2.MP.MN.\cos M} \simeq 14,24\) (cm)
Thay NP vừa tính được vào (*) ta có:
\(OM = ON = OP = R = \frac{{NP}}{{2\sin M}} = \frac{{14,24}}{{2.\sin 42^\circ }} \simeq 10,64\)
Tam giác ONP có \(ON = OP = 10,64;NP = 14,24\)
Áp dụng công thức Heron, ta có:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \simeq 56,3\)(cm2)
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Giải bài 5 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.