OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 7 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1

Cho tam giác MNP có \(MN = 10,MP = 20\) và \(\widehat M = 42^\circ \)

a) Tính diện tích tam giác MNP

b) Gọi O là tâm đường tròn ngoại tiếp tam giác MNP. Tính diện tích tam giác ONP

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 7

Phương pháp giải

+ Áp dụng định lí côsin

Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:

\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\{b^2} = {c^2} + {a^2} - 2ca\cos B\\{c^2} = {a^2} + {b^2} - 2ab\cos C\end{array}\) 

+ Áp dụng công thức Heron: \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)

Lời giải chi tiết

a) Ta có công thức \(S = \frac{1}{2}ab\sin C = \frac{1}{2}.MN.MP.\sin M\)

\( = \frac{1}{2}.10.20.\sin 42^\circ  \simeq 66,91\) (đvdt)

b)  là tâm đường tròn ngoại tiếp tam giác MNP nên ta có:

\(OM = ON = OP = R = \frac{{NP}}{{2\sin M}}\) (*)

Áp dụng định lí côsin ta tính được NP như sau:

\(NP = \sqrt {M{P^2} + M{N^2} - 2.MP.MN.\cos M}  \simeq 14,24\) (cm)

Thay NP vừa tính được vào (*) ta có:

\(OM = ON = OP = R = \frac{{NP}}{{2\sin M}} = \frac{{14,24}}{{2.\sin 42^\circ }} \simeq 10,64\)

Tam giác ONP có \(ON = OP = 10,64;NP = 14,24\)

Áp dụng công thức Heron, ta có:

\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  \simeq 56,3\)(cm2)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 7 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF