OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 7 trang 19 SGK Toán 10 Cánh diều tập 1 - CD

Giải bài 7 trang 19 SGK Toán 10 Cánh diều tập 1

Cho hai tập hợp: \(A = [0;3]\), \(B = (2; + \infty )\). Xác định \(A \cap B,A \cup B,\)\(A\,{\rm{\backslash }}\,B,B\,{\rm{\backslash }}\,A,\mathbb{R}\,{\rm{\backslash }}\,B.\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Phương pháp giải

- Tập hợp gồm tất cả các phần tử vừa thuộc tập hợp A vừa thuộc tập hợp B được gọi là giao của hai tập hợp A và B, kí hiệu \(A \cap B\).

- Tập hợp gồm các phần tử thuộc tập hợp A hoặc thuộc tập hợp B được gọi là hợp của hai tập hợp A và B, kí hiệu \(A \cup B\).

- Tập hợp gồm các phần tử thuộc A nhưng không thuộc B được gọi là hiệu của A và B, kí hiệu A\B.

Hướng dẫn giải

+ Tập hợp A ∩ B là tập hợp các phần tử vừa thuộc A vừa thuộc B 

Vậy A ∩ B = [0; 3] ∩ (2; + ∞) = (2; 3]. 

+ Tập hợp A ∪ B là tập hợp các phần tử thuộc A hoặc thuộc B

Vậy A ∪ B = [0; 3] ∪ (2; + ∞) = [0; + ∞). 

+ Tập hợp A \ B là tập hợp các phần tử thuộc A nhưng không thuộc B

Vậy A \ B = [0; 3] \ (2; + ∞) = [0; 2]. 

+ Tập hợp B \ A là tập hợp các phần tử thuộc B nhưng không thuộc A

Vậy B \ A =  (2; + ∞) \ [0; 3] = (3; + ∞). 

+ Tập hợp \ B là tập hợp các số thực không thuộc tập hợp B

Vậy \ B =  \ (2; + ∞) = (– ∞; 2].

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 7 trang 19 SGK Toán 10 Cánh diều tập 1 - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF