OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 6.16 trang 14 SBT Toán 10 Kết nối tri thức tập 2 - KNTT

Giải bài 6.16 trang 14 SBT Toán 10 Kết nối tri thức tập 2

Xác định dấu của các hệ số a, b, c và dấu của biệt thức \(\Delta  = {b^2} - 4ac\) của hàm số bậc hai \(y = a{x^2} + bx + c\), biết đồ thị của nó có dạng như Hình 6.16.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 6.16

Phương pháp giải

Bước 1: Dựa vào chiều bề lõm quay lên trên/ xuống dưới để tìm dấu của hệ số a

Bước 2: Xét dấu của tung độ giao điểm của ĐTHS với trục Oy để tìm dấu của hệ số c

Bước 3:  Xét dấu tọa độ đỉnh của parabol để xét dấu các biểu thức  \( - \frac{b}{{2a}}\) và \( - \frac{\Delta }{{4a}}\). Từ đó suy ra dấu của hệ số b và ∆

Lời giải chi tiết

- Do parabol có bề lõm quay lên trên nên a > 0

- ĐTHS cắt trục tung tại điểm có tung độ dương nên c > 0

- Đỉnh parabol có hoành độ dương, tung độ âm nên ta có \(\left\{ \begin{array}{l} - \frac{b}{{2a}} > 0\\ - \frac{\Delta }{{4a}} < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b < 0\\\Delta  > 0\end{array} \right.\) (do a > 0)

Vậy a > 0, b < 0, c > 0, ∆ > 0.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 6.16 trang 14 SBT Toán 10 Kết nối tri thức tập 2 - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF