Giải bài 6.19 trang 15 SBT Toán 10 Kết nối tri thức tập 2
Một hòn đá được ném lên trên theo phương thẳng đứng. Khi bỏ qua sức cản của không khí, chuyển động của hòn đá tuân theo phương trình sau:
\(y = - 4,9{t^2} + mt + n\)
với m, n là các hằng số. Ở đây t = 0 là thời điểm hòn đá được ném lên, y(t) là độ cao của hòn đá tại thời điểm t (giây) sau khi ném và y = 0 ứng với bóng chạm đất.
a) Tìm phương trình chuyển động của hòn đá, biết rằng điểm ném cách mặt đất 1,5 m và thời gian để hòn đá đạt độ cao lớn nhất là 1,2 giây sau khi ném
b) Tìm độ cao của hòn đá sau 2 giây kể từ khi bắt đầu ném
c) Sau bao lâu kể từ khi ném, hòn đá rơi xuống mặt đất (Kết quả làm tròn đến chữ số thập phân thứ hai)?
Hướng dẫn giải chi tiết Bài 6.19
Phương pháp giải
Theo giả thiết điểm ném ở độ cao 1,5 m so với mặt đất nên n = 1,5.
Công thức tính độ cao của quả bóng so với mặt đất (tính bằng mét) có thể mô tả bởi phương trình y = –4,9t2 + mt + 1,5 là một hàm số bậc hai có a = –4,9 < 0 có đồ thị là một parabol có bề lõm hướng xuống, do đó, quả bóng đạt độ cao lớn nhất là tung độ của đỉnh parabol tại thời gian ứng với hoành độ đỉnh của parabol
Lời giải chi tiết
a) Theo giả thiết ta có:
+ Điểm ném cách mặt đất 1,5 m \( \Rightarrow n = 1,5\)
+ Thời gian để hòn đá đạt độ cao lớn nhất là 1,2 giây sau khi ném \( \Rightarrow \) Hoành độ đỉnh parabol là 1,2 \( \Rightarrow - \frac{m}{{2.( - 4,9)}} = 1,2 \Leftrightarrow m = 11,76\)
Vậy hàm số có dạng \(y = - 4,9{t^2} + 11,76t + 1,5\)
b) Với t = 2 thì \(y =- 4,9.{2^2} + 11,76.2 + 1,5= 5,42\). Vậy độ cao của hòn đá sau 2 giây là 5,42 m
c) Hòn đá chạm mặt đất tức là độ cao y=0.
Xét PT: \( - 4,9{t^2} + 11,76t + 1,5 = 0 \Leftrightarrow t \approx 2,52\)
Vậy sau 2,52 giây kể từ khi ném, hòn đá rơi xuống mặt đất
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.